# ATTI

DELLA

## REALE ACCADEMIA DEI LINCEI

ANNO CCCIII.

1906

SERIE QUINTA

### RENDICONTI

Classe di scienze fisiche, matematiche e naturali.

VOLUME XV.

2º SEMESTRE.



R O M A

TIPOGRAFIA DELLA R. ACCADEMIA DEI LINCEI

PROPRIETÀ DEL CAV. V. SALVIUCCI

1906

### RENDICONTI

DELLE SEDUTE

### DELLA REALE ACCADEMIA DEI LINCEI

Classe di scienze fisiche, matematiche e naturali.

Seduta del 2 dicembre 1906.

P. BLASERNA, Presidente.

# MEMORIE E NOTE DI SOCI O PRESENTATE DA SOCI

Geodesia. — Riassunto dei lavori di collegamento e di verifica del valore della gravità in Palermo. Nota del Corrispondente A. Venturi.

Il contributo, che alle misure internazionali di gravità cerca di portare l'Istituto geodetico della R. Università di Palermo, dapprima da solo, poi coll'appoggio della R. Commissione geodetica italiana, data dal 1899. L'apparato di Sterneck, che detto Istituto possiede, fu campionato a Vienna, dallo stesso inventore, nel marzo 1899; mentre a Palermo, la prima determinazione di gravità fu eseguita con quello strumento nel luglio-settembre di quell'anno medesimo. Seguì la campagna gravimetrica dell'agosto 1899; poi, dopo una verifica locale fatta nel 1901 sui quattro pendoli, per accertarne una eventuale variazione di lunghezza, e dopo una sosta involontaria, ebbero luogo le campagne del 1904, 1905, 1906. Palermo era, naturalmente, la stazione fondamentale cui dovevano riferirsi le misure istituite nei diversi luoghi, percorsi nelle varie campagne; però non poteva dirsi una sicura base di operazione, senza un valido controllo, esplicato per mezzo di una comparazione ulteriore con Vienna o con altro luogo, già con Vienna sicuramente legato. Inoltre, per poter riunire ad unico sistema tutte le misure eseguite in Sicilia, occorreva un riattacco fra le determinazioni eseguite nella regione orientale dal chiar. prof. Riccò, e le mie, che si estendono sul rimanente territorio dell' Isola.

Questi lavori di collegamento e di verifica, che erano indispensabili per dare salda base alla rete gravimetrica di Sicilia, io ho eseguiti in questi due ultimi anni, in occasione delle periodiche campagne che hanno per fine di dotar l'Isola di un ben distribuito sistema di valori della gravità. Riserbandomi di dar conto di tutto a suo tempo, credo utile, data l'importanza della questione, di fare subito una trattazione a parte dei lavori compiuti a scopo specifico di collegamento e di verifica, onde dimostrare che il sistema gravimetrico siciliano risponde alle giuste esigenze scientifiche che il metodo di Sterneck può consentire, e che quindi può aspirare alla parte che gli sarà fatta nelle ricerche avvenire sulla forma del Geoide.

Per l'esecuzione del prestabilito piano, senza ritornare a Vienna, esistendo a Padova, come ognuno sa, delle magistrali determinazioni di gravità relativa con riferimento a Vienna medesima, mi rivolsi all'illustre prof. Lorenzoni, cultore autorevole di tali studî; ed egli, colla cortesia che lo distingue, volle incaricarsi della nuova campionatura dei nostri pendoli. Le operazioni relative, compiute sotto l'alta direzione di lui, dal personale dell'Osservatorio di Padova, proff. Ciscato, Antoniazzi e G. Abetti, ebbero luogo nei giorni 12-16 luglio 1906. Mi onoro porgere pubblicamente a tutti le mie più vive azioni di grazie.

Quanto al secondo proposito, cioè, di collegare le operazioni orientali colle occidentali, previo accordo col chiar. prof. Riccò, ho eseguito, quest'anno, fra le altre stazioni della campagna, anche quella di Milazzo, ove il detto professore fece, nel 1898, una delle sue determinazioni. L'allacciamento con Padova seguì a mezzo di due operazioni fatte in Palermo nel luglio-settembre 1905, alla distanza di 47 giorni; quello con Milazzo si effettuò pure con altre due operazioni eseguite qui ultimamente nel luglio-settembre 1906, alla distanza di 45 giorni. A Milazzo la stazione fu da me eseguita nei giorni 20, 21, 22 agosto 1906. Non essendo stato possibile stazionare nel luogo ove operò il prof. Riccò nel 1898, essendo esso stato adibito ad uso diverso, feci le operazioni in un locale poco discosto, alla stessa precisa altitudine di quello, di competenza della R. Cantina sperimentale; e compio il dovere di ringraziare il direttore di essa Cantina, dott. Pagnotta, che mi diè modo di accedervi.

Il metodo seguito nelle misure fu, per ragione di omogeneità, il medesimo di quello sempre tenuto: con sedici prove pendolari (quattro per ogni pendolo), divise in due giorni, e con doppia determinazione di tempo all'Universale Salmoiraghi aventi i circoli di 29 cm. di diametro. Si usarono stelle nel verticale della polare, e altre nel 1° verticale, anche a scopo di controllo; le determinazioni singole erano da sedici a venti ogni sera. Nell'Istituto di Geodesia si veniva, così, ad investigare l'andamento del regolatore Strasser e Rhode: indi si pigliavano cronograficamente dei confronti periodici fra questo

e il pendolo Hawelk, animatore dell'apparato di coincidenza. Gli stati di questo pendolo, riportati negli specchietti che seguono, si ottennero riducendo tutti i confronti di un giorno ad un istante ideale medio, che sarebbe quello il quale nello specchietto è intestato con le parole "Data siderale". A Milazzo, invece, il tempo si determinava direttamente sull'Hawelk.

Quanto alla correzione della durata di oscillazione dei pendoli Sterneck dovuta all'andamento dell'orologio, è chiaro che essa dipende, in ultima analisi, dai quattro stati assoluti di quest'ultimo, determinati, coi due metodi, nella prima e terza sera, cioè avanti e dopo le oscillazioni pendolari diurne. Se si dicono rispettivamente  $E_1$ ,  $e_1$ ,  $E_3$ ,  $e_3$  gli errori medi competenti a ciascuno di quei quattro stati, due della  $1^{\bf a}$  sera e due della  $3^{\bf a}$ , l'errore medio  $\mu$  della marcia diurna media, che, come si è detto, è l'unico elemento da cui dipende la correzione dovuta all'andamento dell'orologio, sarà dato dalla espressione

$$\mu = \frac{1}{4} \sqrt{E_1^2 + E_3^2 + e_1^2 + e_3^2} \,.$$

Le E, e vedremo esser poco diverse da  $0^{\rm s}$ ,1; e le  $\mu$  si troveranno tutte vicinissime a  $0^{\rm s}$ ,06: sicchè l'errore medio dell'andamento orario medio complessivo, non sarà molto diverso da  $0^{\rm s}$ ,0025; valore soddisfacente, se si considera che per esso la gravità non sarebbe influenzata che di circa un'unità e mezza di millesimi di centimetro.

I termometri Voytacich furono nuovamente campionati nell'Istituto fisico del chiar. prof. Macaluso, cui rendo nuove grazie. Il barometro aneroide Negretti e Zamba era confrontato spesso coll'ottimo Fortin del Gabinetto di Geodesia. Le operazioni in questo furono eseguite nel solito ottimo locale terreno ove già furono compiute tutte le altre.



I valori delle durate di oscillazione a Vienna che i pendoli avevano nel marzo 1899, secondo la determinazione di Sterneck, erano, in tempo siderale:

| 116       | 117       | 118       | 119       |
|-----------|-----------|-----------|-----------|
| 0,5060985 | 0,5068056 | 0,5070120 | 0,5069882 |

e la gravità a Vienna, qual base di tutte le determinazioni relative, costituente il cosidetto Wiener-System, è

$$g_{\rm v} = 980^{\rm cm}, 876$$
.

A Palermo, i valori d'oscillazione degli stessi pendoli, nel luglio-settembre

dello stesso anno, furono (1)

| 116       | 117       | 118            | 119       |
|-----------|-----------|----------------|-----------|
| 0,5062974 | 0,5070071 | °<br>0,5072195 | 0,5071922 |

dalle quali, colle precedenti, si dedusse la gravità a Palermo,

$$g_s = 980^{\rm cm},090 \pm 0^{\rm cm}005$$
.

A Padova, nel 1905, giusta la relazione trasmessami dal prof. Lorenzoni, lo stato dell'orologio fu determinato dal dott. Antoniazzi; il quale, in base agli stati del regolatore Frodsham 1604, trovò, pel cronometro Nardin delle coincidenze  $\left(N^{\circ}\frac{32}{7843}\right)$ , l'andamento diurno:

$$+2^{s},99 \pm 0^{s},06$$

sul tempo siderale. Il prof. Ciscato e il dott. G. Abetti osservarono le oscillazioni in quantità eguali, ciascuno: l'amplitudine di quelle era di 12': il numero delle coincidenze era di 72. Trascrivendo i loro dati nelle mie abituali forme, si ha il quadro:

Osservazioni gravimetriche a Padova, 1905.

| Data<br>civile   | Pend. | c       | t     | Ъ     | S              | Data<br>civile   | Pend. | С            | t     | ь                      | s              |
|------------------|-------|---------|-------|-------|----------------|------------------|-------|--------------|-------|------------------------|----------------|
| Luglio<br>12,389 | 116   | 40,2545 | 22,34 | 760,9 | s<br>0,5061424 | Luglio<br>14,375 | 116   | s<br>40,2507 | 22,28 | <sup>mm</sup><br>759,7 | s<br>0,5061433 |
| 12,490           | 117   | 36,2369 | 22,41 | 60,7  | 68490          | 14,427           | 117   | 36,2404      | 22,37 | 59,7                   | 68486          |
| 12,611           | 118   | 35,2067 | 22,40 | 59,7  | 70568          | 14,708           | 118   | 35,1885      | 22,40 | 59,4                   | 70606          |
| 12,682           | 119   | 35,3320 | 22,50 | 59,5  | 70304          | 14,781           | 119   | 35,3254      | 22,39 | 59,6                   | 70323          |
| 13,320           | 119   | 35,3429 | 22,16 | 60,6  | 70297          | 15,437           | 118   | 35,1992      | 22,20 | 61,6                   | 70591          |
| 13,399           | 118   | 35,2129 | 22,31 | 60,9  | 70557          | 15,689           | 117   | 36,2290      | 22,25 | 60,3                   | 68514          |
| 13,652           | 117   | 36,2479 | 22,29 | 58,3  | 68477          | 15,759           | 116   | 40,2528      | 22,28 | 60,2                   | 61430          |
| 13,708           | 116   | 40,2520 | 22,42 | 57,7  | 61426          | 16,358           | 119   |              | 22,09 | 62,0                   | 70338          |

ove, come nelle altre mie Memorie, la data civile dell'istante medio delle osservazioni è in tempo dell'E. C. La colonna c indica la durata, in tempo siderale, dell'intervallo tra due coincidenze successive: t la temperatura cen-

<sup>(1)</sup> Venturi, Determ. di gravità relativa ecc., R. Accademia di Palermo, ser. 3<sup>n</sup>, vol. VI, Palermo, 1901.

tigrada, b la pressione barometrica ridotta a 0°, s infine indica la durata dell'oscillazione in tempo siderale, corretta, cioè fatte le riduzioni a 0°, al vuoto, all'arco infinitesimo ed al secondo siderale.

Le oscillazioni medie per ogni pendolo a Padova, sono, per ciò che precede:

| 116            | 117            | 118       | 119       |
|----------------|----------------|-----------|-----------|
| s<br>0,5061428 | s<br>0.5068492 | o,5070581 | 0,5070315 |

Infine la gravità a Padova, in quanto dedotta dal Wiener-System, che è quella che qui dobbiamo impiegare, è

$$g_{pd} = 980^{\text{cm}},677.$$

Quanto a Palermo (Istituto geodetico alla Martorana) già si è detto che le operazioni si fecero al modo di tutte le altre volte; appena giunti da Padova i pendoli, si fece la prima determinazione, nei giorni 23, 24 e 25 luglio: seguì la campagna gravimetrica, di cui darò conto in una prossima pubblicazione; e nei giorni 7, 8, 9 settembre fu eseguita la seconda determinazione di controllo. Qui si riuniscono i dati dell'una e dell'altra, cominciando dalle tabelle degli stati del pendolo Hawelk. In queste, chiamo con A e con B le due distinte determinazioni di tempo, e sotto la colonna corrispondente è segnato lo stato assoluto di Hawelk, col rispettivo errore medio solo agli stati della  $1^a$  e  $3^a$  sera, poichè da questi soli, dipende  $\mu$ . Seguono gli andamenti orarî rispetto al tempo siderale (1).

Stati di Hawelk ed andamenti orarî, Palermo 1905.

| Data                                 | DETERMINAZIONE                                         | A                | DETERMINAZIONE                                   | And, or.           |                 |
|--------------------------------------|--------------------------------------------------------|------------------|--------------------------------------------------|--------------------|-----------------|
| siderale                             | Stato assoluto                                         | And. or.         | Stato assoluto                                   | And. or.           | medio           |
| Luglio<br>23,765<br>24,557<br>25,342 | $\begin{vmatrix} -0.238 \\ -0.266 \end{vmatrix}$ 31,75 |                  | $-\overset{s}{0,227}$ $-0,253$                   | - 0,232<br>- 0,260 |                 |
| 5ettembre<br>7,768<br>8,776<br>9,769 | $+16.01.52,93 \pm 0.09$ $55,25$ $59,21 \pm 0.12$       | +0,097<br>+0,165 | $+16.01.52,61 \pm 0,16$ $55,10$ $59,17 \pm 0,13$ | + 0,104<br>+ 0,170 | +0.100 $+0.168$ |

<sup>(1)</sup> L'Hawelk si monta e smonta ad ogni stazione: quindi non deve far meraviglia la diversità dello stato assoluto tra luglio e settembre.

Calcolando, come si è detto poco sopra, l'errore medio di ciascun andamento orario complessivo di luglio e di settembre, si trova per entrambi

$$\pm 0^{s},0025$$

che corrisponde ad un errore medio, sull'andamento medio diurno, di 0°,06, come si è riscontrato a Padova.

Seguono, ora, le osservazioni gravimetriche di Palermo, prima e dopo la campagna; delle quali la prima fu eseguita, come si è detto, subito dopo l'arrivo dei pendoli da Padova.

Osservazioni gravimetriche a Palermo, 1905.

| Data<br>civile   | Pend. | с            | t     | Ъ      | s            | Data<br>civile   | Pend. | С       | t     | ь              | 3         |
|------------------|-------|--------------|-------|--------|--------------|------------------|-------|---------|-------|----------------|-----------|
| Luglio<br>24,388 | 116   | s<br>38,8895 | 26,63 | 758,50 | 0,5062950    | Luglio<br>25,390 | 116   | 38,9023 | 26,17 | 755,80         | 0,5062941 |
| 24,429           | 117   | 35,1278      | 26,62 | TOM !  | 69990        | 25,423           | 117   | 35,1286 | 26,64 | n <u>w</u> ley | 70011     |
| 24,463           | 118   | 34,1480      | 26,41 | 1000   | 72129        | 25,452           | 118   | 34,1480 | 26,70 |                | 72113     |
| 24,511           | 119   | 34,2615      | 26,35 | 758,30 | 71879        | 25,482           | 119   | 34,2764 | 26,80 | 755,90         | 71824     |
| 24,636           | 119   | 34,2883      | 26,35 | 758,60 | 71821        | 25,635           | 119   | 34,2718 | 26,55 | 755,90         | 71847     |
| 24,671           | 118   | 34,1433      | 26,70 | -      | 72124        | 25,665           | 118   | 34,1375 | 26.55 | _              | 72144     |
| 24,701           | 117   | 35,1162      | 26,72 | -      | 70045        | 25,724           | 116   | 38,8706 | 26,59 | _              | 70048     |
| 24,730           | 116   | 38,8792      | 26,52 | 757,40 | 62952        | 25,751           | 117   | 35,1112 | 26,67 | 755,70         | 62972     |
| Settemb.         | 5,07  | Manual I     | 7 3   |        | II. Only     | Settemb.         |       |         | 5 6   | Markh          |           |
| -0.9             | 116   | TIME         | -     | 4      | # 10 m       | 9,380            | 116   | 39,2522 | 24,97 | 762,50         | 0,5062941 |
| -                | 117   | _            | -     | _      | and the late | 9,415            | 117   | 35,4265 | 25,12 | _              | 70000     |
| 8,485            | 118   | 34,4128      | 25,80 | 763,30 | 0,5072108    | 9,445            | 118   | 34,4217 | 25,40 | _              | 72106     |
| 8,612            | 119   | 34,5331      | 25,78 | 762,50 | 71834        | 9,476            | 119   | 34,5440 | 25,57 | 762,50         | 71834     |
| 8,645            | 116   | 39,2207      | 26,01 | -      | 62946        | 9,626            | 119   | 34,5447 | 25,57 | 762,10         | 71833     |
| 8,679            | 117   | 35,4019      | 26,06 | -      | 70008        | 9,659            | 118   | 34,4102 | 25,80 | _              | 72113     |
| 8,712            | 118   | 34,4035      | 26,09 | - 1    | 72115        | 9,695            | 117   | 35,4042 | 25,83 | _              | 70013     |
| 8.743            | 119   | 34,5283      | 26,08 | 762,50 | 71846        | 9,725            | 116   | 39,2158 | 25,83 | 761.80         | 62961     |

Le durate medie di oscillazione, sono dunque, per ciascun pendolo:

| 1905      | 116       | 117       | 118            | 119            |
|-----------|-----------|-----------|----------------|----------------|
| Luglio    | o,5062956 | 0,5070023 | s<br>0,5072128 | s<br>0,5071843 |
| Settembre | 62949     | 70007     | 72110          | 71837          |
| Diff.     | . + 7     | + 16      | + 18           | + 6            |

Non è verosimile che in un mese di tempo all'incirca, i pendoli abbiano subite sensibili alterazioni di volume, e quel ch'è più, quasi nella stessa misura; per il che stimo più prudente ascrivere le piccole differenze sopra indicate, ad errori residui non determinabili, come flessioni possibili del supposto, attrito su di questo, irregolarità accidentale di andamento dell'orologio delle coincidenze, ecc. Si potranno, quindi, assumere come valori di oscillazione dei quattro pendoli, le medie dei valori precedenti; e avremo:

| 116       | 117        | 118       | 119       |
|-----------|------------|-----------|-----------|
| 0,5062952 | ₹0,5070015 | 0,5072119 | 0,5071840 |

A provare il grado di esattezza di questi risultati, vale — in quanto si astragga da errori sistematici affettanti ugualmente tutti e quattro i pendoli — il metodo da me sempre adoperato (1), fondato sull'uguaglianza dei rapporti dei valori delle oscillazioni relative ad uno stesso pendolo, in due luoghi diversi. Costruendo i residui tra Padova e Palermo (2), abbiamo, indicandoli con w, ed esprimendoli in unità della  $7^a$  decimale del secondo siderale:

$$w_1 = +1,2$$
  $w_2 = -5,4$   $w_3 = +1,2$ 

e di qui si avrebbero i coefficienti intermediari

$$V_1 = v_1 = +1,2$$
  $V_2 = v_3 = -6,0$   $V_3 = v_3 = +2,6$ 

e infine le correzioni dei valori oscillatori dei pendoli: e cioè, sempre in unità della 7ª decimale:

$$\delta_{1,1} = +0.7$$
  $\delta_{2,1} = +1.9$   $\delta_{3,1} = -4.6$   $\delta_{4,1} = +1.9$ 

per Palermo: e

$$\delta_{3,1} = -0.7$$
  $\delta_{2,2} = -1.9$   $\delta_{3,2} = +4.6$   $\delta_{4,2} = -1.9$ 

Le oscillazioni compensate sono, percid:

|         | 116       | 117       | 118       | 119       |
|---------|-----------|-----------|-----------|-----------|
| Palermo | o,5062953 | 0,5070017 | 0,5072114 | 0,5071842 |
| Padova  | 0,5061427 | 0,5068490 | 0,5070586 | 0,5070313 |

<sup>(1)</sup> Venturi, Sulla compensazione dei risultati nelle misure di gravità relativa terrestre, N. Cimento, 1800.

<sup>(2)</sup> Venturi, Ibid, pag. 4.

Da una qualunque di queste coppie, si ricava la gravità a Palermo da quella di Padova: e viene

$$g_{\rm p} = 980^{\rm cm}, 086.3 \pm 0^{\rm cm}, 002.5$$

poichè l'errore medio di una oscillazione compensata risultò (1)

$$E = 3.56 \times 10^{-7}$$
.

Questo risultato mostra che la prima determinazione di gravità a Palermo nel 1899 era soddisfacentemente riuscita ad onta dei sei mesi circa che passarono fra la campionatura a Vienna e le operazioni a Palermo. Si ha dunque, riunendo:

Si potrà quindi assumere la media ponderata di queste due determinazioni, e stabilire come valore della

#### Gravità a Palermo (Martorana) = $980^{\circ m}$ , $086.6 \pm 0^{\circ m}$ ,004.

Riferisco ora sul riattacco avvenuto a Milazzo, fra le misure del professore Riccò e le mie. Il luogo di operazione e la data furono già descritti sopra; aggiungerò che il tempo fu determinato non più col grande Universale usato nella specola geodetica di Palermo, ma col solito ottimo Universale trasportabile Starke-Salmoiraghi, che ha servito in questa e nelle altre campagne. La gravità determinata a Milazzo dal prof. Riccò con un apparato austriaco risultò:

$$g = 980^{\text{cm}}, 143.$$

A Palermo, le due abituali determinazioni d'andata e di ritorno, ebbero luogo nei giorni 23-25 luglio e 4-6 settembre 1906, in tutto nello stesso modo sopra descritto. Riporto qui i due quadri degli stati di Hawelk, e delle oscillazioni pendolari.

Stati di Hawelk ed andamenti orari, Palermo 1906.

| Data             | DETERMINAZIONE          | A        | DETERMINAZIONE          | And, or.       |         |  |
|------------------|-------------------------|----------|-------------------------|----------------|---------|--|
| siderale         | Stato assoluto          | And. or. | Stato assoluto          | And. or.       | medio   |  |
| Luglio<br>23,638 | $+12.18.21,50 \pm 0,13$ | 8        | $+12.18.21,00 \pm 0,14$ | 8              | 8       |  |
| 24,637           | 14,96                   | - 0,273  | 13,85                   | - 0,299        | - 0,286 |  |
| 25,652           | $09,17 \pm 0,10$        | - 0.239  | $08,01 \pm 0,11$        | - 0,240        | - 0,24  |  |
| Settembre        | 1 10 10 70 00           |          |                         | THE SECOND     |         |  |
| 4,748            | $+13.49.58,38 \pm 0,07$ | - 0,743  | $+13.49.58,59 \pm 0,11$ | 0.757          | 0.55    |  |
| 5,762            | 40,30                   | 0,110    | 40,16                   | <b>—</b> 0,757 | - 0,750 |  |
| 6,762            | $22,36 \pm 0,08$        | - 0,747  | $22,45 \pm 0,22$        | - 0.738        | - 0,743 |  |

<sup>(1)</sup> Venturi, Sulla compensazione, ecc., pagg. 13-14.

Gli errori medî di ciascun andamento orario complessivo, risultano

per luglio:  $\pm 0^{s},0025$ ; per settembre:  $\pm 0^{s},0029$ 

corrispondenti agli errori medî dei rispettivi andamenti medî diurni, rappresentati da:

per luglio:  $\pm 0$ °,060; per settembre:  $\pm 0$ °069.

#### Osservazioni gravimetriche a Palermo, 1906.

| Data<br>civile | Pend. | c       | t     | ь      | s         | Data<br>civile | Pend. | c       | t     | ь      | 8         |
|----------------|-------|---------|-------|--------|-----------|----------------|-------|---------|-------|--------|-----------|
| Luglio         |       | 8       | 0     | mm     | 8         | Luglio         |       | s       | 1     | mm     | 8         |
| 24,396         | 116   | 38,8931 | 25,11 | 757,70 | 0,5062951 | 25,382         | 116   | 38,8923 | 25,39 | 756,27 | 0,5062990 |
| 24,427         | 117   | 35,1247 | 25,31 | _      | 70028     | 25,413         | 117   | 35,1270 | 25,55 | _      | 70077     |
| 24,459         | 118   | 34,1490 | 25,47 |        | 72103     | 25,440         | 118   | 34,1519 | 25,67 | _      | 72163     |
| 24,487         | 119   | 34,2733 | 25,54 | 758,20 | 71834     | 25,469         | 119   | 34,2773 | 25,83 | 756,30 |           |
| 24,628         | 119   | 34,2797 | 25,86 | 756,20 | 71805     | 25,668         | 119   | 34,2789 | 26,00 | 756,30 | 7         |
| 24,658         | 118   | 34,1443 | 26,00 |        | 72099     | 25,694         | 118   | 34,1485 | 26,18 |        | 72146     |
| 24,687         | 117   | 35,1199 | 26,01 | -      | 70017     | 25,717         | 117   | 35,1237 | 26,17 |        | 70054     |
| 24,718         | 116   | 38,8827 | 26,03 | 756,50 | 62925     | 25,743         | 116   | 38,8939 | 26,20 | 756,00 |           |
| Settemb.       |       | 156     |       | 100000 |           | Settemb.       |       |         |       |        |           |
| 5,381          | 116   | 38,5484 | 23,71 | 764,00 | 62957     | 6,378          | 116   | 38,5377 | 23,77 | 763,80 | 62976     |
| 5,418          | 117   | 34,8290 | 24,05 |        | 70061     | 6,410          | 117   | 34,8332 | 24,02 | _      | 70052     |
| 5,447          | 118   | 33,8710 | 24,27 | _      | 72133     | 6,439          | 118   | 33,8738 | 24,27 |        | 72131     |
| 5,475          | 119   | 33,9902 | 24,43 | 764,25 | 71864     | 6,168          | 119   | 33,9903 | 24,46 | 764,25 | 71866     |
| 5,637          | 119   | 33,9915 | 24,59 | 763,40 | 71851     | 6,634          | 119   | 33,9848 | 24,83 |        | 71834     |
| 5,669          | 118   | 33,8545 | 24,87 | _      | 72146     | 6,662          | 118   | 33,8534 | 24,98 |        | 72143     |
| 5,701          | 117   | 34,8136 | 24,97 |        | 70045     | 6,690          | 117   | 34,8140 | 25,05 |        | 70042     |
| 5,732          | 116   | 38,5015 | 25,03 | 763,45 | 62973     | 6,718          | 116   | 38,5072 |       | 763,25 | 62964     |

Le durate medie di oscillazione sono dunque, per ciascun pendolo:

| 1906      | 116       | 117       | 118            | 119            |
|-----------|-----------|-----------|----------------|----------------|
| Luglio    | o,5062957 | o,5070044 | s<br>0,5072128 | s<br>0,5071846 |
| Settembre | 2966      | 0050      | 2131           | 1854           |
| Diff.     | - 9       | — 6       | — 10           | - 8            |

Possiamo adunque, per le ragioni sopra allegate, assumere come valori definitivi delle durate di oscillazione a Palermo 1906, le medie dei risultati precedenti: e avremo:

| 116 117   |           | 118       | 119       |  |
|-----------|-----------|-----------|-----------|--|
| s         | s         | s         | s         |  |
| 0,5062961 | 0,5070047 | 0,5072133 | 0,5071850 |  |

RENDICONTI. 1906, Vol. XV, 2° Sem.

La posizione di Milazzo è

Latitudine =  $38^{\circ}.13'.10''$ . Longitudine da Greenwich =  $15^{\circ}.14'.45''$ . Altitudine m. 4.

Seguono gli stati del pendolo Hawelk a Milazzo.

Stati di Halwelk ed andamenti orari, Milazzo 1906.

| Data DETERMINAZIONE A                |                                                 |                 | DETERMINAZIONE                                   | And. or.           |                    |
|--------------------------------------|-------------------------------------------------|-----------------|--------------------------------------------------|--------------------|--------------------|
| siderale                             | Stato assoluto                                  | And. or.        | Stato assoluto                                   | And, or.           | medio              |
| Agosto<br>20,874<br>21,874<br>22,874 | $+1.18.09,43 \pm 0,07$ $02,88$ $55.49 \pm 0,14$ | -0,272 $-0,308$ | $+ 1.18.09,25 \pm 0,12$ $02,92$ $56,20 \pm 0,13$ | - 0,264<br>- 0,280 | - 0,268<br>- 0,294 |

Quindi l'error medio dell'andamento orario complessivo pei due giorni è  $\pm$  0°,0025 corrispondente ad un errore medio sull'andamento medio diurno di  $\pm$  0°,060, come a Palermo.

Le osservazioni pendolari sono riferite nel seguente quadro:

Osservazioni gravimetriche a Milazzo, 1906.

| Data<br>civile   | Pend. | С       | t     | Ъ            | s              | Data<br>civile   | Pend. | c            | t     | ь      | S              |
|------------------|-------|---------|-------|--------------|----------------|------------------|-------|--------------|-------|--------|----------------|
| Agosto<br>21,407 | 116   | 38,9978 | 24,86 | mm<br>762,80 | s<br>0,5062809 | Agosto<br>22,408 | 116   | s<br>38,9860 | 24,82 | 763,90 | s<br>0,5062793 |
| 21,440           | 117   | 35,2082 | 25,12 | -            | 69887          | 22,444           | 117   | 35,1987      | 24,98 | -      | 69874          |
| 21,469           | 118   | 34,2213 | 25,31 | -            | 71985          | 22,471           | 118   | 34,2190      | 25,12 | -      | 71961          |
| 21,498           | 119   | 34,3372 | 25,51 | 763,00       | 71721          | 22,501           | 119   | 34,3392      | 25,30 | 764,10 | 71688          |
| 21,646           | 119   | 34,3512 | 25,79 | 763,10       | 71675          | 22,661           | 119   | 34,3442      | 25,54 | 764,30 | 71665          |
| 21,675           | 118   | 34,2258 | 25,60 | _            | 71961          | 22,691           | 118   | 34,2106      | 25,57 | _      | 71956          |
| 21,705           | 117   | 35,1966 | 25,45 | -            | 69895          | 22,720           | 117   | 35,1892      | 25,49 |        | 69869          |
| 21,734           | 116   | 38,9810 | 25,28 | 763,10       | 62817          | 22,750           | 116   | 38,9628      | 25,37 | 764,30 | 62806          |

Le durate medie di oscillazione, son dunque, per ciascun pendolo:

| 116       | 117       | 118       | 119       |  |
|-----------|-----------|-----------|-----------|--|
| o,5062806 | o,5069869 | o,5071956 | 0,5071665 |  |

Per controllo e compensazione insieme, sottoponiamo ora, questi risultati e quelli di Palermo 1906, sopra riportati, al solito metodo usato sopra fra Padova e Palermo 1905.

I residui sono, in unità della 7ª decimale del secondo siderale:

$$w_1 = -6.2$$
  $w_2 = -6.5$   $w_3 = -4.1$ 

vale a dire, come i precedenti, assolutamente minimi. Comunque, proseguendo nel metodo, si troveranno i coefficienti intermedî, sempre nelle stesse unità:

$$v_1 = V_1 = -6.20$$
  $v_2 = V_2 = -3.40$   $v_3 = V_3 = +0.13$ 

e di qui le correzioni da farsi ai valori delle oscillazioni, nella 7ª decimale:

Per Palermo: 
$$\delta_{116} = +4.1$$
  $\delta_{117} = -1.7$   $\delta_{118} = -2.4$   $\delta_{119} = 0.0$   
Per Milazzo:  $\delta_{116} = -4.1$   $\delta_{117} = +1.7$   $\delta_{118} = +2.4$   $\delta_{119} = 0.0$ .

Cosicchè, le oscillazioni corrette saranno

| 1010 J.108  | 116            | 117            | 118       | 119       |
|-------------|----------------|----------------|-----------|-----------|
| Per Palermo | s<br>0,5062965 | s<br>0,5070045 | o,5072131 | o,5071850 |
| Per Milazzo | 62802          | 69883          | 71968     | 71687     |

Da uno qualunque di questi rapporti, e col valore più sopra registrato della gravità a Palermo, avremo la gravità a Milazzo (Cantina sperimentale):

$$g_v = 980{,}149.8$$
 Il prof. Riccò dà 
$$g_r = 980{,}143.0$$
 Differenza: Diff. =  $+0{,}006.8$ 

che può dirsi un ottimo risultato di verifica e di collegamento, fra le operazioni orientali e occidentali dell'Isola. Quanto all'errore medio delle precedenti determinazioni Milazzo-Palermo, riportate nei quadri precedenti, col solito metodo si trova: prima l'errore medio unitario,

$$\varepsilon = 4.25 \times 10^{-7}$$
;

indi l'errore medio delle risultanze

$$E = 3.35 \times 10^{-7}$$
;

e, infine, l'errore medio sul valore della gravità a Milazzo, che detto  $M_g$ , sarà:

$$M_a = \pm 0^{cm},0018$$
.

Onde la gravità a Milazzo sarà, secondo le recenti mie determinazioni:

$$g_m = 980^{\rm cm}, 149.8 \pm 0^{\rm cm}, 001.8$$
.

\*

Per quanto, in base alle condizioni assolute a cui debbono soddisfare le durate di oscillazione dei pendoli, e che noi abbiamo trovate soddisfatte a meno di trascurabili residui, si possa essere sicuri della regolarità delle operazioni, pure non è senza interesse dare un'altra forma alla prova, considerando in ogni stazione, il valore del pendolo medio ideale, e cercando gli scostamenti fra esso e i valori dei singoli pendoli a cui si riferisce: questi scostamenti dovranno variare col pendolo considerato, ma non da stazione a stazione, a meno di piccole quantità, che dànno la misura dell'esattezza. Esprimendo gli scostamenti in unità della 7ª decimale, abbiamo:

|                  | Pendolo   | Se   | Medio |      |      |         |
|------------------|-----------|------|-------|------|------|---------|
| STAZIONI         | medio     | 116  | 117   | 118  | 119  | scostam |
| Padova           | o,5067704 | 6276 | 788   | 2877 | 2611 | 3138    |
| Pal. Luglio 1905 | 9237      | 81   | 86    | 91   | 06   | 3141    |
| Pal. Sett. 1905  | 9226      | 77   | 81    | 84   | 11   | 3138    |
| Pal. Luglio 1906 | 9244      | 87   | 99    | 84   | 02   | 3143    |
| Pal. Sett. 1906  | 9252      | 86   | 98    | 86   | 02   | 3143    |
| Milazzo          | 9085      | 79   | 96    | 81   | 02   | 3140    |

che mostrano una ottima regolarità.

Sarà ancora utile, sulla questione della deformazione dei pendoli, riportare tutti i valori di oscillazione dei quattro pendoli usati, nei diversi anni nei quali oscillarono a Palermo.

| DATA        | 116       | 117       | 118       | 119            | Pendolo<br>medio |
|-------------|-----------|-----------|-----------|----------------|------------------|
| 1899 Luglio | o,5062974 | o,5070071 | o,5072195 | s<br>0,5071922 | s<br>0,5069290   |
| 1900 Sett.  | 954       | 061       | 157       | 875            | 62               |
| 1901 Agos.  | 982       | 105       | 193       | 916            | 99               |
| 1904 Luglio | 922       | 047       | 126       | 849            | 36               |
| 1904 Sett.  | 925       | 055       | 129       | 844            | 38               |
| 1905 Luglio | 956       | 023       | 128       | 843            | 38               |
| 1905 Sett.  | 949       | 007       | 110       | 837            | 26               |
| 1906 Luglio | 957       | 044       | 128       | 846            | 44               |
| 1906 Sett.  | 966       | 050       | 138       | 854            | 52               |

L'andamento del pendolo medio ideale, sintetizzante i valori oscillatori dei quattro pendoli reali, mostra una quasi stazionarietà nel biennio 1899-1901; e dopo la sosta dei tre anni 1901-4, apparisce un'altra quasi stazionarietà nel biennio 1904-6; ma questi ultimi valori sono sensibilmente inferiori a quelli del primo biennio. Pur non ammettendo che le intere differenze fra determinazione e determinazione sieno da ascriversi a deformazione del metallo dei pendoli (essendovi sempre a temere errori residuali o nel tempo, o nella flessione del supporto, o nell'attrito su di questo, ecc.) pure si deve riconoscere, fra l'andamento dei due bienni una netta diversità, ed ammettere che, sebbene con lentezza, abbia effettivamente avuto luogo una contrazione del metallo da cui i pendoli son costituiti, non tanto nei primi due anni, quanto nei cinque ultimi; contrazione che dalle ultime misure sembra accenni a cessare.

Matematica. — Sulle superficie algebriche che ammettono una serie discontinua di trasformazioni birazionali. Nota del Corrispondente F. Enriques.

La Nota, che mi onoro di presentare all'Accademia, porta un primo contributo al problema di determinare tutte le superficie algebriche che ammettono una trasformazione birazionale non periodica, e quindi una serie discontinua di trasformazioni. La possibilità di superficie siffatte, che non posseggano un gruppo continuo di trasformazioni, era conosciuta per gli esempii del sig. Humbert (superficie di Kummer) e del sig. Painlevè, ai quali ho aggiunto recentemente l'esempio delle superficie di genere  $p_a = p_g = 0$  coi plurigeneri  $P_2 = 1$ ,  $P_3 = 0$ .

Qui si dimostra che le superficie con una trasformazione non periodica (non possedenti un gruppo continuo di trasformazioni) contengono sempre un fascio di curve ellittiche, all'infuori del caso  $p_a=P_2=1$ . Questo caso sembra dar luogo ad una vera eccesione al teorema; infatti il sig. Fano mi comunica che una superficie del 4º ordine  $F_4$ , contenenente una sestica di genere due, ammette una serie discontinua di trasformazioni in sè, e pare che la suddetta  $F_4$  non possieda in generale fasci di curve ellittiche.

A prescindere dalle superficie coi generi 1, il teorema sopra enunciato trae il suo interesse da ciò, che, sotto alcune condizioni complementari, esso è invertibile, di guisachè si può dire che le superficie con un fascio di curve ellittiche ammettono in generale gruppi discontinui di trasformazioni in sè stesse.

Un'analisi approfondita della questione permetterà di porre il resultato qui ottenuto sotto una forma più notevole. Infatti (lasciando sempre da parte il caso  $p_a = P_2 = 1$ ) si potranno esprimere le condizioni perchè una superficie possegga una serie discontinua, ma non un gruppo continuo, di trasforma-