ATTI

DELLA

REALE ACCADEMIA DEI LINCEI

ANNO CCCIV.

1907

SERIE QUINTA

RENDICONTI

Classe di scienze fisiche, matematiche e naturali.

VOLUME XVI.

2º SEMESTRE.

ROMA

TIPOGRAFIA DELLA R. ACCADEMIA DEI LINCEI

PROPRIETÀ DEL CAV. V. SALVIUCCI

1907

Matematica. — Sopra alcune equazioni integrali. Nota di Luciano Orlando, presentata dal Corrisp. T. Levi-Civita.

Se $K(x, y, ...; \xi, \eta, ...)$ rappresenta una data funzione dei due punti $x, y, ...; \xi, \eta, ...$ di un campo τ ; se F(x, y, ...) rappresenta anch'essa una data funzione del punto x, y, ...; e se φ è una funzione incognita, la equazione integrale

(I)
$$\varphi(x,...) = F(x,...) + \lambda \int_{\tau} K(x,...; \xi,...) \varphi(\xi,...) d\tau$$

(dove λ è una costante nota, e $d\tau$ indica l'elemento del campo τ che intornia il punto ξ , η , ...) è stata, in questi ultimi tempi, profondamente studiata.

Un potente impulso a questo ordine di studî, che hanno condotto a deduzioni per generalità ed importanza utilissime, è stato dato da I. Fredholm, il quale ha considerato il problema di determinare φ come caso limite di un problema d'algebra; tale concetto era già stato intuito dal Volterra a proposito di un'equazione integrale affine alla (I). Le ricerche ulteriori di D. Hilbert e della sua scuola (nella quale è da segnalarsi principalmente lo Schmidt) hanno approfondito il problema, specialmente in ciò che si riferisce ai valori della costante λ . Tali ricerche hanno permesso grandi sintesi, mostrando la possibilità di collegare campi, che erano separati fra di loro, ed anche molto difficilmente accessibili.

In questa breve Nota, noi accenneremo a un problema, il quale costituisce un'estensione di quello finora richiamato. Il nostro accenno, anche per la difficoltà e relativa lunghezza che l'intera ricerca presenta, si limiterà all'esposizione di risultati parziali ed imperfetti; ma abbiamo fiducia che ciò non sia interamente inutile, e che possa rendere non difficile un ulteriore svolgimento.

Consideriamo l'equazione integrale

(II)
$$\varphi = F + \lambda \int_{\tau} K f(\varphi) d\tau$$

dove f è simbolo di una data funzione. Abbiamo omesso i parametri per brevità di scrittura: fuori dall'integrale si leggerà $\varphi(x,y,...)$, F(x,y,...), ed entro l'integrale si leggerà $K(x,y,...;\xi,\eta,...)$, $\varphi(\xi,\eta,...)$ come nella (I).

Noi ci limiteremo per ora a studiare la (II) per una forma molto particolare della f; e scriveremo al posto della (II) l'equazione seguente:

(1)
$$\varphi = F + \lambda \int_{\tau} K \varphi^{z} d\tau.$$

Supponiamo che esista un numero Φ , tale che non debba essere oltrepassato da $|\varphi|$ nel campo. A noi basta che tale numero Φ esista, e, se nelle applicazioni importa molto conoscerlo, in teoria ciò non è necessario (1).

Adopereremo, per risolvere la (1), un procedimento di approssimazioni successive.

Se, invece della (1), poniamo

l'errore

$$arphi + arepsilon_1 = \mathbb{F}$$
 , $arepsilon_1 = -\lambda \int_{\mathbb{T}} \mathbb{K} \, arphi^2 \, d au$

verifica l'inuguaglianza

$$|arepsilon_1|\!<\!|\lambda| oldsymbol{arPhi}^2\!\!\int_{ au}\!|{
m K}|\,d au$$
 , after adjustance from A

Se stabiliamo che sia

$$|\lambda| < \frac{\alpha}{3 \Phi \int_{\tau} |\mathbf{K}| d\tau},$$

dove α è una costante positiva < 1, la precedente inuguaglianza si può scrivere:

$$|\varepsilon_1| < \frac{\alpha \Phi}{3}.$$

Ora, in seconda approssimazione, scriveremo:

$$\varphi + \epsilon_2 = F + \lambda \int_{\tau} K(\varphi + \epsilon_1)^2 d\tau = F + \int_{\tau} K F^2 d\tau.$$

L'errore sarà:

$$\varepsilon_2 = \lambda \int_{\Gamma} (2 \varphi \varepsilon_1 + \varepsilon_1^2) d\tau;$$

ed è facile vedere che, per la (2) e per la (3), si può scrivere:

$$|\epsilon_{\mathbf{z}}| < \frac{\alpha}{3\boldsymbol{\phi}} |2\boldsymbol{\varphi}\epsilon_{1} + \epsilon_{1}^{2}| < \frac{\alpha}{3\boldsymbol{\phi}} |\epsilon_{1}| |2\boldsymbol{\Phi} + \epsilon_{1}| < \frac{\alpha}{3\boldsymbol{\phi}} |\epsilon_{1}| 3\boldsymbol{\Phi} < \frac{\alpha^{2}\boldsymbol{\Phi}}{3}$$

Se ancora, in terza approssimazione, poniamo:

$$\varphi + \epsilon_3 = F + \lambda \int_{\tau} K(\varphi + \epsilon_2)^2 d\tau = \cdots$$

(dove $\varphi + \epsilon_z$ s'intende dato dalla precedente espressione $F + \int_{\tau} K F^z d\tau$,

relativa qui al polo &, \eta, ...), l'errore

$$\varepsilon_3 = \lambda \int_{\tau} \mathbb{K}(2\boldsymbol{g}\varepsilon_2 + \varepsilon_2^2) d\tau$$

verifica la relazione

$$|\epsilon_3| < \frac{\alpha}{3 \sigma} |2g\epsilon_2 + \epsilon_2^2| < \frac{\alpha}{3 \sigma} |\epsilon_2| |2\sigma + \epsilon_2| < \frac{\alpha}{3 \sigma} |\epsilon_2| 3\sigma < \frac{\alpha^3 \sigma}{3}$$

Continuando, si vede che l'errore

$$\varepsilon_{\nu} = \lambda \int_{\tau} K(\varphi + \varepsilon_{\nu-1})^2 d\tau$$

verifica la relazione

$$|arepsilon_{\mathsf{v}}| < \frac{lpha^{\mathsf{v}} \mathbf{\Phi}}{3}$$

Ora, per v infinito, il secondo membro tende a zero, dunque l'errore tende a zero per v infinito.

Se, dunque, la funzione F fosse nulla, le successive grandezze $\varphi + \varepsilon_1$, $\varphi + \varepsilon_2$, ... sarebbero tutte nulle e φ risulterebbe nulla.

Tutto ciò appare valido soltanto quando sia valida la restrizione (2). Noi vogliamo ora (ed è questa la cosa più importante) liberarci da questa restrizione.

Nella (1) poniamo $c\psi$ al posto di φ (con c rappresentiamo una costante). Allora la (1) diventa

(1)'
$$\psi = \frac{F}{c} + c\lambda \int_{\tau} K\psi^2 d\tau.$$

Quest'equazione, perfettamente analoga alla (1), contiene $\frac{F}{c}$ al posto di F, il che poco importa, e poi contiene cà al posto di à. Basta fissare c in modo che $|c\lambda|$ verifichi la (2) per ricavare ψ dalla (1)' con quell'approssimazione η che si vuole. Moltiplicando ψ per c, si ricaverà φ con approssimazione $c\eta$ (numero perfettamente arbitrario che può sempre pensarsi $<\eta$). E si potrà dire in generale che alla condizione F = 0 corrisponde soltanto (1) la soluzione $\varphi = 0$ della (1).

Cosa analoga, come è noto, non capita per la (I), anzi esistono valori speciali di λ (*Eigenwerthe*) per i quali a F = 0 può non corrispondere $\varphi = 0$.

Se, invece della (1), avessimo considerato l'equazione

$$\varphi = F + \lambda \int_{\tau} K \varphi^m d\tau,$$

⁽¹⁾ Noi non consideriamo quelle soluzioni che diventano infinite per $\lambda = 0$. Di ciò parleremo in una prossima Memoria.

con m positivo arbitrario (diverso da 1), saremmo giunti, in modo più complicato ma perfettamente analogo, al risultato che abbiamo dimostrato per la (1).

Se avessimo considerato l'equazione

Se avessimo considerato l'equazione
$$\varphi = F + \lambda \int_{\tau} K(\varphi + \varphi^{z}) d\tau,$$
la sostituzione $\varphi = \varphi' - \frac{1}{\tau}$ ci avrebbe condotti a

la sostituzione $\varphi = \varphi' - \frac{1}{2}$ ci avrebbe condotti a

$$g' = F + \frac{1}{2} - \lambda \int_{\tau} \frac{K}{4} d\tau + \lambda \int_{\tau} K g'^2 d\tau$$

diversa soltanto dalla (1) per avere la funzione nota $F + \frac{1}{2} - \lambda \int_{\tau} \frac{K}{4} d\tau$ al posto della funzione nota F. La nullità di F non impegna, per quest'ultima equazione (4), la nullità di φ .

Ed ora, per non dilungarci, noi ci limiteremo ad enunciare un teorema. che ormai risulta abbastanza semplice.

Se $f(\varphi)$ è una funzione (della variabile φ) sviluppabile come segue:

$$f(\boldsymbol{\varphi}) = a_2 \boldsymbol{\varphi}^2 + a_3 \boldsymbol{\varphi}^3 + a_4 \boldsymbol{\varphi}^4 + \cdots,$$

l'equazione integrale

$$\varphi = \lambda \int_{\tau} \mathbf{K} f(\varphi) \, d\tau$$

ha, qualunque sia λ , l'unica soluzione $\varphi = 0$.

Notiamo che questo teorema non è più valido (ma continua ad essere valido il nostro metodo di risoluzione) quando lo sviluppo ha la forma $a_0 + a_1 \varphi + a_2 \varphi^2 + \cdots$. Se poi esso non si riduce identicamente ad $a_1 \varphi$, allora siamo nel noto caso dell'equazione di Fredholm.

Matematica. — Sulle equazioni integrali. Nota di Eugenio ELIA LEVI, presentata dal Socio LUIGI BIANCHI.

1. Il risultato fondamentale della bella teoria delle equazioni integrali della forma

(1)
$$\varphi(x) + \int_a^b k(xy) \, \varphi(y) \, dy = f(x)$$

è stato stabilito dal Fredholm (1) nell'ipotesi che la funzione caratteristica k(xy) restasse sempre finita nel campo $a \le x \le b$, $a \le y \le b$, od anche divenisse infinita nei punti $x \equiv y$ di ordine $\leq \frac{1}{(x-y)^{\alpha}}$, dove α indica un

(1) I. Fredholm, Sur une classe d'équations fonctionnelles, Acta Math. 27.