ATTI

DELLA

REALE ACCADEMIA DEI LINCEI

ANNO CCXC.

1893

SERIE QUINTA

RENDICONTI

Classe di scienze fisiche, matematiche e naturali.

VOLUME II.

1° SEMESTRE

 $${\rm R} \ {\rm O} \ {\rm M} \ {\rm A}$$ tipografia della R. accademia dei lincei

PROPRIETÀ DEL CAV. V. SALVIUCCI

1893

poichè in tal caso il numero dei punti dell'unico gruppo che la sostituisce è minore o eguale a quello che basta a individuare ogni $C^{m-3-\alpha}$.

- "Ora supponiamo che il teorema sia vero per ogni g_n^r già esistente sulla C_p^m , dico che esso sarà vero per una g_{n+1}^{r+1} esistente in questa. Infatti assumiamo nella g_{n+1}^{r+1} un gruppo di cui un punto P non sia fisso per la serie e indichiamo il gruppo dei rimanenti punti con G_n . Tutti i gruppi g_{n+1}^{r+1} che contengono il punto P formano una g_{n+1}^r parziale col punto fisso P: astraendo da P formano una g_n^r che contiene G_n . Per ipotesi per ogni gruppo della g_n^r passa una $C_n^{m-3-\alpha}$; e se una di queste non contenesse il punto fisso P, la serie determinata dal gruppo G_n P, considerata col punto fisso P, sarebbe completa, e ciò non è; dunque tutte le $C_n^{m-3-\alpha}$ che passano per G_n passano per P, e quindi per ogni gruppo della g_{n+1}^{r+1} passa una curva $C_n^{m-3-\alpha}$.
- "Il teorema essendo vero per ogni g°_{n-r} , è vero per una g^{1}_{n+1-r} , per una g^{2}_{n+2-r} , ecc., e quindi è vero pure per la g_{n}^{r} .
 - · Possiamo enunciare questo teorema anche sotto la seguente forma:
- = Sopra una curva C_p^m piana che sia proiezione di una curva $C_p^{m\alpha}$ di un $S_{p+\alpha(\alpha+3)}$, ogni g_n^r per la quale si abbia

$$r > n - p + \left\lceil m\alpha - \frac{\alpha (\alpha + 3)}{2} \right\rceil - \varrho$$

si può staccare mediante un sistema di curve aggiunte di ordine m $-3-\alpha$.

Matematica. — Sopra un gruppo continuo di trasformazioni di Jonquières nel piano. Nota di Federigo Enriques, presentata dal Socio Cremona.

- 1. In una precedente Nota ho stabilito che ogni gruppo continuo di trasformazioni cremoniane del piano (dipendente da un numero finito di parametri), può esser birazionalmente trasformato in un altro appartenente ad uno dei seguenti gruppi:
 - 1°) gruppo ∞8 delle omografie;
- 2°) gruppo ∞6 delle trasformazioni quadratiche che mutano in sè due fasci di raggi (o gruppo delle inversioni rispetto ai circoli);
- 3°) gruppo ∞^{n+5} (con n intero arbitrario) delle trasformazioni di Jonquières (d'ordine n) che mutano in sè il sistema lineare ∞^{n+1} delle curve d'ordine n con un punto base (n-1)plo e le n-1 tangenti fisse.
- ${}_{\circ}$ Il 1° ed il 2° gruppo sono stati più volte studiati. Il sig. Lie (¹) ha dimostrato che il gruppo delle omografie in S_n (in particolare il nostro gruppo 1°)

⁽¹⁾ Theorie der Transformationsgruppen. Bd. I, S. 560 (Math. Ann. 25).

è semplice (1). Il 2º gruppo, che può studiarsi come quello delle trasformazioni proiettive della quadrica in sè, opera sulle generatrici di ciascun sistema (sitema d'imprimitività) permutandole come il gruppo totale delle proiettività binarie: quindi esso contiene due (e due soli) sottogruppi eccezionali (∞ ³) di omografie biassiali.

" Invece il nostro 3º gruppo, per quanto io so, non è ancora stato studiato in generale, ed io mi propongo di assegnarne qui la composizione. Ciò darà luogo ad alcune osservazioni sulla geometria del piano che ha il detto gruppo principale di trasformazioni.

" 2. Ho già notato (nella prec. Nota) che il gruppo 3° corrisponde al gruppo K delle trasformazioni proiettive in sè del cono razionale normale (d'ordine n) di S_{n+1} (quando il detto cono sia rappresentato sul piano), ed è sotto questo aspetto che prenderò a considerarlo.

"Una trasformazione generica del gruppo K si ottiene assumendo ad arbitrio l'iperpiano unito opposto al vertice del cono, in esso una fra le ∞^3 proiettività che mutano in sè la curva sezione (ossia prendendo ad arbitrio una proiettività binaria che scambi fra loro le generatrici, come elementi d'un sistema d'imprimitività), ed infine fissando pure arbitrariamente il rimanente invariante assoluto dell'omografia: così appunto ho dedotto che il gruppo K è ∞^{n+5} .

"Poichè esso opera sulle generatrici come il gruppo totale delle proiettività binarie, e questo è semplice, un sottogruppo eccezionale ∞^r di K opera sulle dette generatrici come il detto gruppo totale o come l'identità; nel 1° caso contiene ∞^{r-3} omologie, nel 2° è tutto costituito di omologie.

"3. Ora le ∞^{n+2} omologie col centro nel vertice O del cono formano effettivamente un sottogruppo eccezionale in K; questo per la considerazione prec. non può esser contenuto in alcun sottogruppo eccezionale di K, diverso da K, il quale avrebbe una dimensione minore di n+5 (= n+2+3).

« 4. In questo gruppo ∞^{n+2} delle omologie di centro O è contenuto come sottogruppo eccezionale il sistema ∞^{n+1} delle omologie (speciali) il cui iperpiano di punti uniti passa per O: questo è anche un sottogruppo eccezionale in K, giacchè appunto (secondo la definizione) ogni omografia di K trasforma un'omologia speciale di centro O in un'altra analoga. Il gruppo ∞^{n+1} delle omologie speciali è costituito di omologie due a due permutabili (²), poichè sopra ogni retta per O (che è retta unita per tali omologie) sono permutabili le proiettività paraboliche subordinate di quelle omologie (avendo gli stessi punti uniti).

⁽¹⁾ Dicesi composto un gruppo che contiene qualche sottogruppo (diverso da sè stesso e dall'identità) trasformato in sè dalle trasformazioni del gruppo (o, come si dice, un sottogruppo eccezionale), semplice nel caso opposto. Determinare la composizione d'un gruppo significa determinarne i sottogruppi eccezionali.

⁽²⁾ Cioè il cui prodotto gode la proprietà commutativa.

e Si consideri un suo sottogruppo ∞^r (r < n+1) che può ritenersi generato da r sue omologie indipendenti (e del resto arbitrarie) π_1 π_2 ... π_r , nel senso che una trasformazione del gruppo ∞^r può rappresentarsi col simbolo $\pi_1^{s_1}$ $\pi_2^{s_2}$... $\pi_r^{s_r}$ (1). Gli iperpiani delle r omologie generatrici hanno comune un S_{n+1-r} per O, il quale appartiene agli ∞^{r-1} iperpiani (luogo di punti uniti) delle ∞^r omologie speciali del gruppo. Ora nessuno spazio lineare per O (di dimensione < n+1) gode della proprietà invariantiva rispetto a tutte le trasformazioni di K (sebbene goda di questa proprietà rispetto alle omologie contenute in K), giacchè ne seguirebbe l'esistenza di generatrici di contatto del cono con iperpiani osculatori appartenenti al detto spazio, le quali sarebbero unite per tutte le omografie di K, mentre abbiam notato che il gruppo K opera sulle generatrici del cono come il gruppo totale delle proiettività binarie. Si deduce che nessun sottogruppo di quello ∞^{n+1} delle omologie speciali di centro O è contenuto eccezionalmente in K.

* 5. Il sig. Lie (2) ha dimostrato che se entro un gruppo continuo vi sono due sottogruppi eccezionali, essi hanno comune un sottogruppo eccezionale ∞^1 almeno, o sono costituiti di trasformazioni tali che ciascuna di quelle d'un sottogruppo è permutabile con ciascuna di quelle dell'altro. Di qua si trae anzitutto che un sottogruppo eccezionale di K diverso da quello ∞^{n+1} delle sue omologie speciali deve contenere quest' ultimo, giacchè non vi sono in esso sottogruppi eccezionali di K (§ 4), e d'altra parte non vi è nessuna omografia di S_{n+1} , diversa da una di quelle omologie, e permutabile con ciascuna di esse. Inoltre se il sottogruppo di cui si suppone l'esistenza non è quello ∞^{n+2} delle omologie considerato al § 3, per una osservazione del § 2, il sottogruppo stesso deve essere ∞^{n+4} (e non contenere altre omologie di K tranne quelle speciali). In K non possono esistere due siffatti sottogruppi eccezionali poichè avrebbero comune un sottogruppo eccezionale ∞^{n+3} (3).

* 6. Dobbiamo ora riconoscere l'effettiva esistenza d'un sottogruppo eccezionale ∞^{n+4} in K formato dalle omografie (speciali) aventi un punto unito infinitamente vicino al vertice O del cono. Questo sistema ∞^{n+4} di omografie speciali rimane evidentemente invariato trasformandolo colle omografie di K; inoltre nel sistema comparisce insieme ad una omografia anche l'inversa; basta dunque mostrare che due omografie del sistema, cioè due omografie

⁽¹⁾ Secondo Lie (op. c. Bd. I, S. 45) in un gruppo continuo ∞^r di trasformazioni vi sono r trasformazioni infinitesimali linearmente indipendenti, generatrici di r gruppi ∞^1 (che possono considerarsi come gruppi di potenze di una trasformazione in essi contenuta) i quali generano per moltiplicazione l'intiero gruppo. Essendo poi π_1 π_2 ... π_r due a due permutabili, esse appartengono sempre ad un gruppo ∞^r (o più ristretto), poichè

 $[\]pi_1^{s_1} \pi_2^{s_2} \dots \pi_r^{s_r} \cdot \pi_1^{t_1} \pi_2^{t_2} \dots \pi_r^{t_r} = \pi_1^{s_1 + t_1} \pi_2^{s_2 + t_2} \dots \pi_r^{s_r + t_r}$

⁽²⁾ Op. c. Bd. I, S. 264.

⁽³⁾ Lie, op. c. Bd. I, S. 264.

speciali di K, danno per prodotto un'omografia del sistema (cioè speciale). Dimostreremo questo fatto per induzione completa da n-1 ad n: la proprietà enunciata sussiste per il cono quadrico (n=2) giacchè le omografie con un punto unito infinitamente vicino al vertice entro il gruppo ∞^7 di tutte le trasformazioni proiettive del cono in sè, corrispondono per dualità ai movimenti entro il gruppo totale delle omografie che mutano in sè il cerchio all'infinito delle sfere (similitudini).

"Ciò posto supponiamo dimostrata la proprietà per i coni di S_n . Proiettando da un suo punto il cono di S_{n+1} si ottiene quello di S_n , ed al gruppo delle omografie mutanti in sè il 1° cono che lasciano fermo il centro di proiezione, corrisponde il gruppo delle omografie che mutano in sè il 2° cono lasciando ferma una sua generatrice: fra queste ultime per ipotesi formano gruppo le omografie speciali, quindi sul cono di S_{n+1} due omografie speciali che hanno comune un punto unito sul cono (ed appartenenti al gruppo K del cono) danno per prodotto un'omografia speciale (di K).

"Denotiamo col simbolo π (con accenti o apici) un' omografia speciale di K, con T una sua omologia speciale. Vi è una retta unita per π contenente O su cui la π subordina un' omografia parabolica, ed un' omografia parabolica (collo stesso punto unito O) subordina su di essa la T, quindi il prodotto π T (o T π o π T⁻¹) è ancora una omografia speciale di K.

" Le omografie speciali π_1 π_2 (di K) abbiano come unita una stessa generatrice del cono unito, a su di essa risp. i punti uniti A_1 A_2 (oltre ad O): si può fissare una omologia T (di cui l'iperpiano sia un qualunque iperpiano per O), tale che il prodotto π_1 T abbia il punto unito A_2 ; allora abbiamo

$$\pi_2 \cdot (\pi_1 \operatorname{T}) = \pi$$

ossia

$$(\pi_2 \, \pi_1) \, \mathrm{T} = \pi$$

e moltiplicando per T-1

$$\pi_2 \, \pi_1 = \pi \, \mathrm{T}^{-1} = \pi'.$$

« Si vede così, intanto, che due omografie speciali di K con una stessa generatrice unita del cono, danno per prodotto un'omografia speciale di K.

Sieno ora π_1 , π_2 due arbitrarie omografie speciali di K; sia r_1 una generatrice del cono unita per la 1^a , r_2 una generatrice unita della 2^a ; sia r_3 una generatrice unita dell' omografia π_2 π_1 . Le omografie speciali di K operano sulle generatrici del cono come le ∞^3 proiettività binarie; possiamo dunque costruire una omografia speciale (ausiliaria) π' coi raggi uniti r_1 , r_3 , la quale muti in r_2 l'ulteriore raggio unito della π_1 . Allora (tenendo presente la legge di moltiplicazione dimostrata per le omografie speciali di K con una generatrice unita comune) si ha

$$\pi_1 \pi' = \pi''$$
 (raggio unito comune r_1)

$$\pi_2(\pi_1 \pi') = \pi'''$$
 (raggio unito comune r_2)

$$(\pi_2 \, \pi_1 \, \pi') \, \pi'^{-1} = \pi$$
 (raggio unito comune r_3)

- "Così è dimostrato per induzione completa che le omografie speciali di K formano un gruppo, e precisamente un sottogruppo eccezionale ∞^{n+4} di K.
- 47. Riassumendo i resultati dei precedenti §§ possiamo dire che il gruppo ∞^{n+5} delle omografie mutanti in sè un cono d'ordine n di \mathbf{S}_{n+1} contiene tre, e tre soli, sottogruppi eccezionali; cioè quello ∞^{n+4} delle omografie speciali (con un punto unito infinitamente vicino al vertice O), quello ∞^{n+2} delle omologie di centro O, e quello ∞^{n+1} delle omologie speciali di centro O (e iperpiano per O) due a due permutabili.

« Interpretiamo questi risultati nel piano relativamente al gruppo (3°) delle trasformazioni di Jonquières che mutano in sè il sistema di curve rappresentativo del cono.

- Un'omografia generale trasformante in sè il cono di S_{n+1} (cioè appartenente a K) ha n+1 iperpiani uniti di cui uno (non passante per O) sega il cono secondo una curva non spezzata, e gli altri segano il cono secondo le due generatrici unite (dove lo toccano più volte): per un'omografia speciale di K l'iperpiano unito opposto ad O viene a passare per O, e quindi anche la sua sezione si compone delle due generatrici unite. Questa proprietà si può interpretare nel piano come caratteristica pel sottogruppo eccezionale ∞^{n+4} del gruppo 3°. Diamo senz'altro l'enunciato, includendovi l'interpretazione degli altri sottogruppi eccezionali di K (che è immediata).
- "Il gruppo (3°) ∞^{n+5} delle trasformasioni di Jonquières d'ordine n (nel piano), che mutano in sè il sistema $\infty^{n+1}\mu$ delle curve d'ordine n con un punto base (n-1)plo e le n-1 tangenti fisse, contiene tre e tre soli sottogruppi eccezionali α , β , γ risp. ∞^{n+2} , ∞^{n+2} ed ∞^{n+1} .
- *Mentre per una trasformazione generale del gruppo totale vi è nel sistema μ una curva unita che non si compone delle due rette unite per il punto (n-1)plo, in una trasformazione generica del sottogruppo $\infty^{n+4}\alpha$, non vi è alcuna curva unita del sistema μ che non si componga delle due rette unite nominate.
- * Il sottogruppo ∞^{n+2} β si compone delle trasformazioni di Jonquières prospettive coi raggi uniti pel punto base (n-1)plo del sistema μ .
- "Il sottogruppo $\infty^{n+1} \gamma$ (comune ad α e β) si compone delle trasformazioni di Jonquières prospettive che subordinano omografie paraboliche sui raggi uniti pel punto base (n-1)plo del sistema μ , e sono due a due permutabili.
- * 8. Possiamo illuminare i risultati ottenuti ponendo in relazione il nostro gruppo (3°) con un altro gruppo ben noto; ne seguirà una notevole interpretazione della geometria del piano che ha il detto gruppo come gruppo principale di trasformazioni.
 - ${\mbox{\sc l}}$ L'inviluppo del cono d'ordine n di ${\bf S}_{n+1}$ può trasformarsi per dualità

in una linea razionale normale d'ordine n, C, dell' iperpiano all'infinito di \mathbf{S}_{n+1} : il gruppo K si muta in quello delle omografie trasformanti in sè la detta linea e quindi l'iperpiano a cui appartiene; ciascuna di queste omografie altera i volumi in un rapporto costante (è un'affinità) (1); il sottogruppo eccezionale α è dato dalle affinità equivalenti (conservanti i volumi) che trasformano in sè la data linea all'infinito; i gruppi β e γ risp. dal gruppo delle omotetie e delle traslazioni in S_{n+1} . Così l'esistenza di 3 sottogruppi eccezionali in K poteva dedursi a priori: occorreva mostrare che non vi erano in K altri sottogruppi eccezionali, e vedere come questi vengano rappresentati; effettivamente al gruppo generale delle affinità equivalenti non compete la proprietà peculiare di avere un iperpiano unito infinitamente vicino a quello all'infinito, proprietà che spetta al sottogruppo ottenuto aggiungendo come corpo la linea C. Ma nel caso in cui n è pari questa proprietà poteva riconoscersi notando che la quadrica (dell'iperpiano all'infinito) definita dalla polarità in cui un punto della C corrisponde allo S_{n-1} osculatore (2), è mutata in sè dalle omografie del gruppo, il quale può quindi considerarsi come sottogruppo del gruppo delle similitudini. Una considerazione analoga potrebbe istituirsi quando n è dispari sostituendo, come assoluto, un sistema nullo ad una quadrica; i due casi potrebbero considerarsi analiticamente sotto un aspetto comune (3).

- " Daltra parte la geometria del piano che ha come gruppo principale quello delle trasformazioni del gruppo 3°, è suscettibile della seguente interpretazione.
- "Si fissi nell'iperpiano all'infinito di S_{n+1} un assoluto costituito dalla linea C. Per una retta r di S_{n+1} (non all'infinito) si hanno così n iperpiani $L_1 L_2 ... L_n$ seganti lo S_{n-1} all'infinito negli S_{n-2} osculatori alla C per il punto all'infinito della r. Due arbitrari iperpiani per la r, considerati come corrispondenti, determinano una proiettività (e l'inversa) nella forma Φ_{n-1} degli iperpiani per r, dove $L_1 ... L_n$ sono elementi uniti; possiamo considerare gli n-1 invarianti assoluti di questa proiettività (o i loro logaritmi) come gli angoli dei due iperpiani nella forma Φ_{n-1} , nel senso che essi servono a fissare la reciproca posizione dei due iperpiani nella forma, come l'angolo di due piani nel fascio (di S_3); due iperpiani non determinano i loro angoli

⁽¹⁾ Per il gruppo delle affinità negli iperspazi cfr. Lie, op. c., Bd. I, S. 574.

⁽²⁾ Secondo un teorema di Clifford, On the classification of Loci (Philosophical Transactions, 1878).

⁽³⁾ Il gruppo delle similitudini di S₃ (come duale del gruppo del cono quadrico) è considerato in Clebsch-Lindemann Bd. II, S. 373; per la letteratura relativa ad esso e al sottogruppo dei movimenti oltre alla op. c. cfr. Lindemann, Math. Ann. VII S. 56: per il gruppo delle similitudini negli iperspazi cfr. Lie, op. c. . Il gruppo delle trasformazioni lineari del sistema nullo in sè è considerato in Clebsch-Lindemann, op. c. S. 373 e 389.

(per n > 2) finchè non è fissata la r, ma invece n iperpiani indipendenti definiscono il gruppo degli angoli formati due a due.

"In questo senso la geometria del piano che ha come gruppo principale il nostro gruppo 3° , può interpretarsi come una nuova estensione della ordinaria geometria metrica euclidea (di S_3) in S_{n+1} ".

Fisica. — Sopra una equazione analoga a quella degli aeriformi valevole per i metalli. — Nota del prof. Enrico Boggio Lera, presentata dal Socio Beltrami.

Questa Nota sarà pubblicata nel prossimo fascicolo.

Chimica. — Sull'acido Disantonoso (1). Nota preliminare di Americo Andreocci, presentata dal Socio Cannizzaro.

- L'acido Santonoso reagisce facilmente cogli ossidanti anche se blandi; ma purtroppo con molti di questi genera delle sostanze amorfe di difficilissima purificazione; per esempio col jodio ottenni una sostanza amorfa la di cui soluzione alcoolica è di un bel verde smeraldo con fluorescenza azzurra; però i dati analitici di diversi campioni non sono d'accordo: si avvicinano alla composizione di un acido dimetil-naftochinon-propionico, ma non permettono di stabilirla con certezza.
- Per ora il cloruro ferrico è quello che ha dato migliori risultati ed ecco come operai.
- "Disciolsi 100 grammi di acido Santonoso in litri 3,5 di acido acetico (40 %) bollente, e seguitando a far bollire aggiunsi, poco, a poco, grammi 150 di cloruro ferrico disciolto in 500 cc. di acqua.
- « Il liquido si colorò in rosso; dopo alcuni minuti si precipitò una sostanza cristallina, che raccolsi su filtro, lavai con acido acetico diluito e freddo ed infine purificai con ripetute cristallizzazioni dall'alcool.
- « Cristallizza in aghi incolori; fonde fra 250°-50°,5 alterandosi alquanto. È insolubile nell'acqua; più solubile a caldo che a freddo nell'alcool e nell'acido acetico, ed è pochissimo solubile nell'etere. È un acido, infatti si discioglie nelle soluzioni dei carbonati alcalini a freddo.
- I dati analitici e la determinazione della grandezza molecolare mediante i metodi ebolliscopico in soluzione alcoolica e crioscopico in soluzione acetica, conducono alla formola C³⁰ H³⁸ O⁶; dalla quale si deduce come il

⁽¹⁾ Lavoro eseguito nell'Istituto Chimico della R. Università di Roma.