ATTI

DELLA

REALE ACCADEMIA DEI LINCEI

ANNO CCXC.

1893

SERIE QUINTA

RENDICONTI

Classe di scienze fisiche, matematiche e naturali.

VOLUME II.

2° Semestre

ROMA
TIPOGRAFIA DELLA R. ACCADEMIA DEI LINCEI

PROPRIETÀ DEL CAV. V. SALVIUCO

1893

Chimica fisica. — Sul potere rifrangente del fosforo. III. Potere rifrangente di alcune combinazioni organiche del fosforo (1). Nota del dott. FILIPPO ZECCHINI, presentata dal Corrispondente R. NASINI.

" In questa Nota proseguo lo studio dei composti del fosforo e mi occupo di alcune combinazioni organiche di questo elemento, degli eteri etilici dell'acido fosforoso e fosforico e dell'acido fosfenilico. Lo studio dell'acido fosfeniloso $P(C_6H_5)$ (OH)₂ l'ho tentato, ma stante la poca solubilità di quest'acido nei diversi solventi, i dati che si ricavarono dalle soluzioni non erano molto concordanti fra loro e perciò tralascio di pubblicarli. Per ciò che riguarda il metodo esperimentale ed il calcolo dei risultati rimando alla mia 1ª Nota (²).

Cloruro di fosfenile P(C6 H5)Cl2.

" Fu preparato dietro nostra richiesta dalla Fabbrica Schuchardt di Goerlitz col processo Michaelis (3), cioè per azione del tricloruro di fosforo sul benzolo. Il prodotto che era assai puro fu da me rettificato: bolliva alla temperatura di 221°,72-223° (corr.) alla pressione di 759 mm. (ridotta a 0°).

Trifenilfosfina P(C₆ H₅)₃.

" Proveniva dalla fabbrica Koenig di Lipsia. Il suo punto di fusione era a 78°. L'esperienze furono eseguite in soluzione benzolica, ed il benzolo di cui mi sono servito aveva questi valori

$$\mu_{\text{H}_{\alpha}} = 1,50309; \quad \mu_{\text{D}} = 1,50801; \quad d_{t_{0}}^{7.2} = 0,89971$$

$$\frac{\mu_{\text{H}_{\alpha}} - 1}{d} = 0,55950 \qquad \qquad \frac{\mu_{\text{H}_{\alpha}}^{2} - 1}{(\mu_{\text{H}_{\alpha}}^{2} + 2)d} = 032881$$

$$\frac{\mu_{\text{D}} - 1}{d} = 0,56497 \qquad \qquad \frac{\mu_{\text{D}}^{2} - 1}{(\mu_{\text{D}}^{2} + 2)d} = 0,33152$$

- (1) Lavoro eseguito nell'Istituto di Chimica generale della R. Università di Padova.
- (1) Rend. R. Acc. dei Lincei, Classe di Scienze fisiche ec., vol. I, parte 2ª, pag. 433, anno 1892.
 - (3) Liebig's, Annalen, CLXXXI, pag. 280, anno 1876.

Furono esaminate due soluzioni, una all'11,713 º/o alla temperatura di 6,9°; l'altra al 7,402 °/o alla temperatura di 4,8°.

Chimica fisica. - Sul potere rifrangente del fosforo. III. Po-Etere trietilfosforoso P(C. H. O)3:

- Fu preparato col processo di Zimmermann (1) modificato da Jähne (2), facendo agire sull'etilato sodico, sospeso nell'etere anidro, il tricloruro di fosforo. Bolliva alla temperatura di 185°-186° in corrente d'idrogeno.

All'analisi ebbi i seguenti resultati: I. gr. 0,1978 di sostanza dettero gr. 0,3109 di CO₂ e gr. 0,1628 di H₂O; II. gr. 0,3588 di sostanza dettero gr. 0,5646 di CO₂ e gr. 0,2950 di H₂O.

oble at reavarone dalle soluzioni neinp'id amortico

a I No	trovato per	cento parti	calcolato per P (C H ₅ O)s
	I.	II.	
C	42,89	42,91	43,37
H	9,15	9,15	9,04

- Ho esaminato sia al refrattometro che allo spettrometro campioni di diversa preparazione: su questa sostanza e sull'etere trietilfosforico ho insistito nelle determinazioni per le ragioni che svilupperò tra poco.

Etere trietilfosforico PO(C2 H5 0)3.

- Fu preparato col processo di Limpricht (3), facendo agire l'ossicloruro di fosforo sopra l'etilato sodico. Venne più volte rettificato. Bolliva a 204°-205°. È un liquido incoloro, di odore aggradevole.
 - " All'analisi ebbi i seguenti risultati:
- I. gr. 0,2142 di sostanza dettero gr. 0,3090 di CO₂ e gr. 0,1626 di H₂ O. II. gr. 0.1141 di sostanza dettero gr. 0.1630 di CO_2 e gr. 0.0864 di H_2 O. III. gr. 0,2384 di sostanza dettero gr. 0,3406 di CO2 e gr. 0,1674 di H2 O.

- Di qui

	trovato per cento parti			calcolato per PO(C ₃ H ₅ O		
	I.	II.	III.			
C 23188	39,27	39,00	38,97	39,56		
H	8,43	8,41	7,81	8,24		

Russiconn, 1893, Vol. II. 2º Sem.

⁽¹⁾ Zimmermann, Liebig's Annalen CLXXV, pag. 10, anno 1875.

⁽²⁾ Jähne, Liebig's Annalen, CCLVI, pag. 272, anno 1890.

⁽³⁾ Limpricht, Liebig's Annalen. CXXXIV, pag. 347, anno 1865.

"Anche per questo etere ho fatto diverse determinazioni sopra campioni di diversa preparazione.

Cloruro ossietilfosforoso. P(C2 H50)Cl2.

"Fu preparato seguendo le prescrizioni date dal Thorpe (1) facendo agire nelle proporzioni volute l'alcool assoluto sopra il tricloruro di fosforo. È un liquido incoloro che fuma un poco all'aria. Esso bolliva a 116° alla pressione di mm. 758,3 (ridotta a 0°). Il suo peso specifico lo calcolammo mediante la formula data dal Thorpe:

$$V = 1 + 0.00102304 t + 0.00000187367 t^2 + 0.0000000000061 t^3$$

$$(d_4^{\circ} = 1.30527)$$

"All'analisi dette i seguenti resultati: gr. 0,2646 di sostanza dettero gr. 0,1573 di CO₂ e gr. 0,0710 di H₂ O. "Di qui

	trovato per cento parti	calcolato per P(C2 H5 O)Cl2
C	16,21	16,33
H	3,36	3,40

Acido fosfenilico. P(C₆ H₅)0 (OH)₂.

- "Questo composto che può anche chiamarsi acido fenilfosfinico, fu preparato col processo Michaelis (2) facendo agire l'acqua sul tetracloruro di fosfenile tenuto raffreddato. Esso fondeva a 156°-158°. Stante la piccola quantità non potei fare che una sola determinazione in soluzione acquosa: la concentrazione di questa era di 8,137°/o.
- "Nelle due tabelle seguenti sono riuniti i resultati della mie esperienze e dei miei calcoli: la rifrazione atomica del fosforo è stata calcolata in base alle costanti atomiche adottate in tutti i lavori che escono da questo Istituto: per l'etere trietilfosforico a uno degli atomi di ossigeno ho attribuito il così detto valore aldeidico, e lo stesso è a dirsi per uno degli atomi di ossigeno dell'acido fosfenilico.

⁽¹⁾ Thorpe, Journ. Chem. Soc., vol. XXXVII, pag. 345, anno 1880.

⁽²⁾ Michaelis, Liebig's Annalen, vol. CLXXXI, pag. 321, anno 1876.

7,50 5.07

41,79 35,61

182 147 158

Acido fosfenilico . . . $P(C_6H {\color{blue} \bullet}) O(OH)_2$ Cloruro ossietilfosforoso P(C2H50)Cl2

60,07

N.B. I numeri che rappresentano le rifrazioni molecolari ed atomiche sono valori medi.

TABELLA I.

Nome delle sostanze	Tempera- tura	<i>d</i> .	пня	8	ra D	$\frac{\mu_{\mathrm{H}\alpha}-1}{d}$	$\mu_{\mathrm{D}} = 1$	$\begin{bmatrix} \mu_{\mathrm{H}\alpha}^2 - 1 \\ (\mu_{\mathrm{H}\alpha}^2 + 2) \ d \end{bmatrix}$		$\frac{\mu_{\mathrm{D}}^{z}-1}{(\mu_{\mathrm{D}}^{z}+2)d}$
Cloruro di fosfenile .	5°,8	1,33507 1,33693 0,92233		Carl M.	1,60533 1,60499 1,52475	0,44844 0,44778 0,59276	0,45341 0,45370 0.59890	osfore, d		0,25811 0,25771 0,33610
Intentifoshia	4°,8(°) 7°,4 13°,4 27°	0,91527 1,08328 1,07607 1,06007	Hire in	Dist you of	1,51933 1,41338 1,41074 1,40461	0,59379	0,59768 0,38138 0,38170 0,38168	0,33343	JID(0	0,33518 0,23048 0,23061 0,23101
Etere trietilfosforico.	17°,7 17°,1 28°,1	1,08216 1,07014 1,06176	20 4100	alcolar	1,41065 1,40674 1,40268	111	0,37947 0,38008 0,37926	ephalales doint li	AL (0)	0,22927 0,22989 0,22967
Cloruro ossietilfosforoso	24°,5	1,27182		1,46105	1,46400	0,36219 0,36251	0,36467 0,36497	0,21561 0,21578	(OB	0,21656
mir b sc ud i nots with	12°,4 (³)	1,02846	9	1	1,34692	810 60k	0,38022	noles or or	070	0,22538
I valori dt,	$\mu_{\Pi_{\alpha}} = \mu_{\alpha}$ si	riferiscond	ad una s	oluzione be	enzolica a	si riferiscono ad una soluzione benzolica all'11,713 º/o	T om	rosen nioss s lfs	leon	
(3)	fond deter		" " "	" ac	acquosa	7,402 %				
u s,i segi ifiazi dotta dotta to s i	Plseo Sola		1.0	TABELLA II.	Hetter H					
NOME DELLE SOSTANZE	FORMULA	PESO moleco- P-lare	$\frac{\mu_{\mathrm{H}\alpha}-1}{d}$	$P_{d} = \frac{\mu_{\rm b} - 1}{d}$	$- P \frac{\mu_{\rm H_2}^{\frac{2}{3}}}{(\mu_{\rm H_2}^{\frac{2}{3}})}$	$\frac{\mu_{\mathrm{H}\alpha}^2 - 1}{(\mu_{\mathrm{H}\alpha}^2 + 2)} \left P \frac{\mu}{(\mu)} \right $	$\left \frac{\mu_{\mathrm{D}}^{z}-1}{\left(\mu_{\mathrm{D}}^{z}+2\right)d}\right ^{c}$	Rifrazione atomica del fosforo (n) $\mu_{H_{\alpha}} \mid \mu_{D}$	Rifra aton n) del fosf $\mu_{H_{\alpha}}$	Rifrazione atomica del fosforo (n^2) $\mu_{\text{H}_{\alpha}}$ μ_{D}
Cloruro di fosfenile .	P(C,H,)Cl.	179	80,21	81,10	45,	-419	46,17	16,19 17.47		67,8
Trifenilfosfina	P(C ₆ H ₆) ₃	262	155,44	156,75	87,44		87,94	24,34 26,16	11,18	_
Etere trietilfosforoso.	P(C2H60)3		90,89	63,34	38,12	V	38,30	5,16 5,0	5,08 2,90	0 2,97
Etere trietilfosforico .	PO(C2H20)3	182	1	60'69			41,79	1,2	7,50 -	4,17
Cloruro ossietilfosforoso P(C2H50)Cl2	P(C2H50)Cl2	147	53,26	53,62	31,71		31,87	14,36 14,10	10 7,93	
	TALOUND TAN OFFICE									

« Nei derivati che contengono il gruppo fenile, eccettuato l'acido fosfenilico, il potere rifrangente atomico del fosforo è assai elevato: elevatissimo anzi nella trifenilfosfina, dalla quale si ricava un valore più grande che da tutte le altre combinazioni sin qui studiate, giacchè pel bijoduro di fosforo si ha soltanto 24,12 (formula n) e 9,92 (formula n^2). Questo fatto, cioè che nella trifenilfosfina il fosforo ha un grande potere rifrangente, ha molta analogia coll'altro da me scoperto per le basi feniliche (¹): nell'anilina $C_6H_5.H_2N$ l'azoto ha la rifrazione atomica 6,90 (n) e 3,07 (n^2), mentre nella trifenilammina questi valori salgono sino a 18,81 (n) e 8,32 (n^2). È però da osservarsi che le variazioni nel potere rifrangente non debbono essere pel fosforo così grandi come per l'azoto: infatti mentre nella trietilammina l'azoto ha un valore di circa 5 (formula n) e 2,5 (formula n^2) e poi nella trifenilammina quelli che sopra ho riportati, invece nella trietilfosfina il fosforo ha già un valore assai elevato 17,24 (formula n) e 9,47 (formula n^2): cosicchè mentre per l'azoto il rapporto fra le due rifrazioni atomiche è circa di 1:3 per il fosforo invece è di circa 1:1,5 per la formula n e ancora più piccolo per la formula n^2 : è però anche in questo caso innegabile l'esaltamento prodotto dal fenile.

" Confrontando il cloruro di fosfenile col tricloruro di fosforo troviamo che la sostituzione del fenile al cloro ha prodotto un aumento nel potere rifrangente che si rende specialmente sensibile per la formula n: infatti

	Rifrazione atomica d	el fosforo.
	Formula n	Formula n2
Tricloruro di fosforo PCl ₃	14,89	8,32
Cloruro di fosfenile P(C6 H5)Cl2	17,47	8,78

- "Nel cloruro ossietilfosforoso la rifrazione atomica del fosforo è poco differente, un po' minore, da quella che esso ha nel tricloruro: le differenze sono tali che si potrebbe quasi ritenere che rientrassero negli errori di osservazione. È da notarsi inoltre per il cloruro ossietilfosforoso come per la riga D (formula n) si ricava pel fosforo una rifrazione atomica un poco minore che per la riga H_{α} : ciò dipende, a mio credere, dal fatto che si tratta di un composto a piccola dispersione contenente relativamente molto idrogeno e molto cloro, elementi che per la riga D hanno costanti atomiche maggiori assai che per la riga $H_{\alpha}(^2)$.
- "Notevole assai è il comportamento dei due eteri, il trietilfosforoso e e il trietilfosforico: tanto notevole che io ho creduto necessario di prepararli diverse volte, di analizzarli e di esaminarli ripetutamente: le analisi e le osservazioni riportate in questo lavoro non sono che una parte delle molte che

⁽¹⁾ F. Zecchini, Sopra un notevole caso di accrescimento anomalo nel potere rifrangente delle basi feniliche. Rend. R. Acc. Lincei, Classe di scienze fisiche ecc., vol. II, parte 1^a, pag. 491, anno 1893.

⁽²⁾ F. Zecchini, Rifrazioni atomiche degli elementi rispetto alla luce gialla del sodio. Rend. R. Acc. dei Lincei, Classe di scienze ecc., vol. I, parte 2ª, pag. 187, anno 1893.

ho fatto e che erano abbastanza d'accordo fra di loro. Facendo al solito il calcolo noi abbiamo per il fosforo valori assai diversi: nell'etere fosforico un valore assai più elevato che nell'etere fosforoso:

3,07 (a*), mentre nella trifenil-	Rifrazione atomica del	fosforo.
(a) e 8,32 (a*). È però da osser-		Formula nº
Etere trietilfosforoso P(OC ₂ H ₅) ₃	5,08 is stated feet i	not 2,97 of odo leney
Etere trietilfosforico PO(OC2 H5)3	7,50 Halm : clexal	194,1709 ibnary 1000

I due eteri si comportano assai diversamente dagli acidi liberi (¹): in primo luogo è diverso il valore che si ricava pel fosforo: dall'acido fosforoso si avrebbero i numeri 5,94 (n) e 2,77 (n²) e dall'acido fosforico i numeri 4,08 (n) e 1,46 (n²): di più mentre la differenza tra la rifrazione molecolare dell'etere trietilfosforoso e quella del trietilfosforico è di 5,94 (n) e di 3,69 (n²), quella invece tra l'acido fosforico [23,95 (n); 14,25 (n²)] ed il fosforoso [22,02 (n); 13,15 (n²)] è appena di 1,95 (n) e di 1,10 (n²): è molto diversamente vanno le cose confrontando il fosfato bisodico

 $Na_2 HOP_4 [29,12 (n); 16,52 (n^2)]$

col fosfito sodico

 $Na_2 HPO_3 [26,00 (n); 14,66 (n^2)]$:

la differenza è qui di 3,12 (n) e di $1.87 (n^2)$: la differenza avrebbe qui un valore intermedio: si avrebbe questo fatto: dal confronto fra i due eteri per l'ossigeno aldeidico si ricaverebbe un valore quasi doppio di quello generalmente ammesso; dal confronto fra i due acidi un valore quasi metà: dal confronto tra i due sali un valore quasi normale.

- Quale dei due eteri si comporta in modo anomalo? Saranno troppo grandi i valori relativi all'etere fosforico o troppo piccoli quelli relativi al fosforoso?
- Considerando l'etere fosforico come risultante dall'unione di tre molecole di alcool etilico con una di acido fosforico per eliminazione di tre molecole di acqua noi otteniamo, tanto per la formula n che per la formula n^2 , dei numeri che si accordano abbastanza bene con quelli dati dalla esperienza:

(Formula n)	: etime				in sylor egievin
Acido fosforico	parte	Tre molecole d'alcool etilico	Tre molecole	rtate i	Una molecola i fosfato trietilico
H ₃ PO ₄	+	3C ₂ H ₅ OH	 3H ₂ O	=	$PO(OC_2 H_5)_3$
23,95		62,49	16,8		69,64

(1) F. Zecchini, Potere rifrangente degli acidi del fosforo e dei loro sali sodici. Rend. R. Acc. dei Lincei. Classe di scienze fisiche ecc., vol. II, parte 1ª, pag. 31, anno 1893. Invece fu trovato 69,09.

(Formula n^2)

Acido fosforico

H₃ PO₄ + 3C₂ H₃ OH - 3H₂ O =

14,25 38,22 10,87

Tre molecole d'acqua di fosfato trietilico

PO(OC₂ H₃)₃

41,60

Invece fu trovato 41,79.

- Come si può ben prevedere questo accordo non si ha per l'etere fosforoso: facendo il calcolo in modo perfettamente analogo si avrebbe come valore calcolato 67,71, mentre il trovato è 63,34 (formula n) e 40,50 invece di 38,12 (formula n^2). Sembrerebbe dunque che fosse proprio il fosfito trietilico che si comporta in modo anormale, mentre normalmente si comporta il fosfato. È inutile il dire che se si ricava dal fosfato il valore di P_2 O_5 , si ha un numero che si accorda abbastanza con quelli che si possono ricavare per questa anidride dall'acido orto e metafosforico, mentre per P_2 O_3 dall'etere fosforoso si hanno numeri eccessivamente bassi.
- "È a notarsi come spesso il valore ottico del residuo alogenico che si ricava dall'acido libero è presso a poco lo stesso di quello che si ricava dagli eteri: ciò constatarono il Nasini e il Costa per l'acido solforico e ciò vale anche qui per l'acido fosforico, mentre, come è naturale, per l'acido fosforoso si hanno forti divergenze. Se il comportamento speciale del fosfato di etile dipenda dalla natura prevalentemente bibasica dell'acido fosforoso e dalla funzione di quell'atomo di ossigeno che si ammette non trovarsi nelle stesse condizioni degli altri due, è questione che abbisogna di altre esperienze per essere non dirò risoluta, ma trattata.
- "Nondimeno a questo riguardo mi sembra di una certa importanza il fatto che nell'acido fosfenilico, malgrado la presenza del fenile che pel solito produce dei notevoli esaltamenti nel potere rifrangente, il fosforo entra con rifrazioni atomiche assai piccole, identiche può anzi dirsi con quelle che ha nel fosfito d'etile: ciò porterebbe quasi a credere che il fosfito trietilico non fosse altro che l'etere etilico dell'acido etilfosfinico. Su tale argomento, che sino ad ora non è stato oggetto che di pochissimi studi, mi propongo di ritornare tra breve."

dalla soluzione del quale subito si può precipitare per mezzo dell'anidride carbonica l'etere inalterate; mentre si saponifica, se si riscalda la soluzione

b havere escentioned Laboratorio del D. Istitute chimico di Roman

lucati Randiconti l'a semestre 1893 p. 494.