## ATTI

DELLA

## REALE ACCADEMIA NAZIONALE DEI LINCEI

ANNO CCCXIX.

SERIE QUINTA

## RENDICONTI

Classe di scienze fisiche, matematiche e naturali.

VOLUME XXXI.

1° SEMESTRE.



ROMA

TIPOGRAFIA DELLA R. ACCADEMIA NAZIONALE DEI LINCEI PROPRIETÀ DEL DOTT. PIO BEFANI

1922

verge ivi quasi dappertutto, fatta cioè al più eccezione per i punti di un insieme di misura nulla. In tale ricerca torna utile, come mi propongo di far vedere in un'altra Nota, il teorema del  $\S$  2. Per mezzo di questo teorema si arriva infatti a dimostrare che la (7) converge uniformemente nell'intervallo (a,b), se:

$$\lim_{n=\infty} \left[ \left( \sum_{k=1}^{n+p} B_k^2 \right) \cdot \left( \sum_{k=1}^{n+p} A_k B_k^2 \right) \right] = 0;$$

in particolare se risulta, qualunque sia n:

$$\left| \sum_{k=1}^{n} \mathcal{A}_{k} B_{k}^{2} \right| \leq C \qquad (C \text{ costante}).$$

Relatività. — Sopra i senomeni che avvengono in vicinanza di una linea oraria. Nota III di Enrico Fermi, presentata dal Corrispondente G. Armellini.

§ 4. Per mostrare l'applicazione dei risultati precedenti alla teoria della relatività, supporremo che  $\nabla_n$  sia la  $\nabla_4$  spazio-tempo e che L sia una linea oraria, in vicinanza della quale ci proponiamo di studiare i fenomeni. Ponendo per brevità in (5)  $ds_{\rm M} = ds$ , si trova in questo caso:

$$ds^2 = (1 + C \times M - P)^2 ds_P^2 + d\overline{y}_1^2 + d\overline{y}_2^2 + d\overline{y}_3^2.$$

Per evitare la comparsa di immaginarii e ristabilire l'omogeneità, conviene fare la seguente sostituzione di variabili:

$$s_P = vt$$
;  $\overline{y}_1 = ix$ ;  $\overline{y}_2 = iy$ ;  $\overline{y}_3 = iz$ ,

essendo v una costante con le dimensioni di una velocità, per modo che t abbia le dimensioni di un tempo. Si ottiene, così,

(9) 
$$ds^2 = a dt^2 - dx^2 - dy^2 - dz^2$$
 dove

(10) 
$$a = v^2(1 + C \times M - P)^2.$$

Da ora in avanti, con gli ordinarî simboli del calcolo vettoriale intenderemo riferirci allo spazio x, y, z. Ed è in questo senso che si può intendere il prodotto scalare che figura in (10), purchè per C si intenda il vettore avente per componenti le componenti covarianti della curvatura geodetica della linea x = y = z = 0 e con M — P il vettore di componenti x, y, z. Chiameremo x, y, z coordinate di spazio e t tempo. Per uniformità scriveremo talvolta  $x_0$ ,  $x_1$ ,  $x_2$ ,  $x_3$  al posto di t, x, y, z e chiameremo anche  $g_{ik}$  i coefficienti della forma quadratica (9).

§ 5. Sia (1)  $F_{ik}$  il campo elettromagnetico e  $(\varphi_0, \varphi_1, \varphi_2, \varphi_3)$  il tensore di primo ordine "potenziale" di  $F_{ik}$ , in modo che sia  $F_{ik} = \varphi_{ik} - \varphi_{ki}$ . Poniamo  $\varphi_0 = \varphi$  e chiamiamo u il vettore di componenti  $\varphi_1, \varphi_2, \varphi_3$ . Si avrà intanto:

$$\left. \begin{array}{l} \left. \begin{array}{l} \mathbf{F_{01}} \\ \mathbf{F_{02}} \\ \mathbf{F_{03}} \end{array} \right| = \operatorname{grad} \varphi - \frac{\Im u}{\Im t} \, ; \begin{array}{l} \mathbf{F_{23}} \\ \mathbf{F_{31}} \\ \mathbf{F_{12}} \end{array} \right| = -\operatorname{rot} u \; , \; \mathbf{F_{ii}} = 0 \; , \; \mathbf{F_{ik}} = -\mathbf{F_{ki}}, \end{array}$$

parimenti

$$\left| \frac{\mathbf{F}^{01}}{\mathbf{F}^{02}} \right| = \frac{1}{a} \left( -\operatorname{grad} \boldsymbol{\varphi} + \frac{\partial \boldsymbol{u}}{\partial t} \right), \frac{\mathbf{F}^{(23)}}{\mathbf{F}^{(31)}} \right| = -\operatorname{rot} \boldsymbol{u}, \mathbf{F}^{(ii)} = 0, \mathbf{F}^{(ik)} = -\mathbf{F}^{(ki)}$$

e quindi

$$\frac{1}{4} \sum_{ik} \mathbf{F}_{ik} \, \mathbf{F}^{(ik)} = \frac{1}{2} \left\{ \mathrm{rot^2} \, u - \frac{1}{a} \left( \mathrm{grad} \, \boldsymbol{\varphi} - \frac{\partial u}{\partial t} \right)^2 \right\},$$

Sia dw l'elemento di ipervolume di V4. Avremo

$$d\omega = \sqrt{-\parallel g_{ik} \parallel} \, dx_0 \, dx_1 \, dx_2 \, dx_3 = \sqrt{a} \, dt \, d\tau$$

dove  $d\tau = dx dy dz$  è l'elemento di volume dello spazio.

Si ha anche:

$$\Sigma \varphi_i dx_i = \varphi dt + udM$$
  $dM = (dx, dy, dz)$ .

Prescindendo dall'azione del campo metrico, la cui variazione è nulla perchè lo riguardiamo come dato a priori dalla (9), l'azione prenderà la seguente forma:

$$W = \frac{1}{4} \int_{\omega} \sum_{ik} F_{ik} F^{(ik)} d\omega + \int_{\varepsilon} de \int_{\varepsilon} \varphi_i dx_i + \int_{m} dm \int ds$$

$$\begin{pmatrix} de & = \text{ elemento di carica elettrica} \\ dm & = \text{ elemento di massa} \end{pmatrix}.$$

Introducendo le notazioni indicate, si trova

(11) 
$$W = \frac{1}{2} \iint \left\{ \operatorname{rot}^{2} u - \frac{1}{2} \left( \operatorname{grad} \varphi - \frac{\partial u}{\partial t} \right)^{2} \right\} \sqrt{a} dt d\tau + \iint \left( \varphi + u \times \nabla_{L} \right) \varrho d\tau dt + \iint \sqrt{a - \nabla_{M}^{2}} k d\tau dt,$$

dove  $\varrho$ , k sono rispettiv. le densità di elettricità e di materia, per modo che  $de = \varrho \, d\tau$ ,  $dm = k \, d\tau$ ,  $V_L$  è la velocità delle cariche elettriche,  $V_M$  quella delle masse.

Gli integrali del secondo membro possono estendersi ad un campo arbitrario  $\tau$  tra due tempi qualunque  $t_1$   $t_2$ . Si ha poi il vincolo che sul contorno del campo  $\tau$ , e per i due tempi  $t_1$   $t_2$ , siano nulle tutte le variazioni.

<sup>(1)</sup> Per le notazioni e per la deduzione Hamiltoniana delle leggi della fisica, vedi Weyl., op. cit., pp. 186 e 208.

All'infuori di queste condizioni, le variazioni di  $\varphi$  e di u sono completamente arbitrarie. Per contro, alle variazioni di x, y, z, considerate come coordinate di un elemento di carica o di massa, possono essere imposte ulteriori condizioni, traducenti i vincoli del particolare problema che si sta studiando. Scrivendo intanto che è nullo dw per una variazione qualunque  $d\varphi$  di  $\varphi$ , si trova

$$0 = -\iint \left(\operatorname{grad} \varphi - \frac{\partial u}{\partial t}\right) \times \delta \operatorname{grad} \varphi \frac{dt \, d\tau}{\sqrt{a}} + \iint \delta \varphi \, \varrho \, dt \, d\tau.$$

trasformando il primo integrale con opportuna applicazione del teorema di Gauss, e tenendo presente che  $d\varphi$  si annulla sul contorno, troviamo

$$0 = \iint \delta \varphi \left\{ \varrho + \operatorname{div} \left[ \frac{1}{1/a} \left( \operatorname{grad} \varphi - \frac{\partial u}{\partial t} \right) \right] \right\} dt dt$$

e, siccome  $\delta oldsymbol{arphi}$  è arbitrario, abbiamo intanto l'equazione

$$(12) \qquad \qquad \varrho + \operatorname{div} \left\{ \left[ \frac{1}{\sqrt{a}} \left( \operatorname{grad} \boldsymbol{\varphi} - \frac{\partial \boldsymbol{u}}{\partial t} \right) \right] \right\} = 0.$$

In modo analogo, facendo variare u, si trova

(13) 
$$\varrho \, \nabla_{\mathbf{x}} + \operatorname{rot} \left( \sqrt{a} \operatorname{rot} u \right) - \frac{\partial}{\partial t} \left[ \frac{1}{1/a} \left( \operatorname{grad} \varphi - \frac{\partial u}{\partial t} \right) \right] = 0.$$

Queste due ultime equazioni permettono di determinare il campo elettro-magnetico, una volta assegnate le cariche ed il loro movimento.

Un altro gruppo di equazioni si può ottenere facendo variare in W le traiettorie delle cariche e delle masse. Siano  $\delta P_{\rm M}$  la variazione della traiettoria delle masse,  $\delta P_{\rm L}$  quella delle cariche. Indichiamo inoltre, essendo u un vettore funzione di punto e V un vettore, con  $\frac{\partial u}{\partial P}$  (V) il vettore di componenti  $\frac{\partial u_x}{\partial x} V_x + \frac{\partial u_x}{\partial y} V_y + \frac{\partial u_x}{\partial z} V_z$  ed analoghe. Scrivendo che è nulla la variazione di W, si trova allora, coi soliti artifici:

$$\begin{split} & (14) \iiint \left( \delta \mathbf{P_{L}} \times \operatorname{grad} \boldsymbol{\varphi} - \delta \mathbf{P_{L}} + \left( \frac{\partial u}{\partial t} + \frac{\partial u}{\partial \mathbf{P}} (\mathbf{V_{L}}) \right) + \mathbf{V_{L}} \times \frac{\partial u}{\partial \mathbf{P}} (\delta \mathbf{P_{L}}) \right) \boldsymbol{\varrho} \ dt \ d\tau + \\ & + \iiint \delta \mathbf{P_{M}} \times \left\{ \frac{dt}{ds} \frac{\operatorname{grad} \boldsymbol{u}}{2} + \frac{d}{dt} \left( \frac{dt}{ds} \ \mathbf{V_{M}} \right) \right\} \mathbf{k} \ dt \ d\tau = 0 \ . \end{split}$$

Se i  $\partial P$  ad un tempo non dipendono da i loro valori, per altri tempi dovrà essere nullo in (14) il coefficiente di dt. Si trova così:

$$(15) \int \left\{ \delta P_{L} \times \operatorname{grad} \varphi - \delta P_{L} \left[ \frac{\partial u}{\partial t} + \frac{\partial u}{\partial P} (\nabla_{L}) \right] + \nabla_{L} \times \frac{\partial u}{\partial P} (\delta P_{L}) \right\} \varrho d\tau + \\ + \int \delta P_{M} \times \left\{ \frac{1}{2} \frac{dt}{ds} \operatorname{grad} a + \frac{d}{dt} \left( \frac{dt}{ds} \nabla_{M} \right) \right\} k d\tau$$

che deve essere verificata per tutti i sistemi di &P soddisfacenti ai vincoli.