ATTI

DELLA

REALE ACCADEMIA DEI LINCEI

ANNO CCXCII

1895

SERIE QUINTA

RENDICONTI

Classe di scienze fisiche, matematiche e naturali.

VOLUME IV.

1° SEMESTRE

ROMA
TIPOGRAFIA DELLA R. ACCADEMIA DEI LINCEI

PROPRIETÀ DEL CAV. V. SALVIUCCI

1895

che coincida colla soluzione principale della (1) relativa al punto (0, α_2 , ... α_n). Poichè infatti nel caso attuale essa deve ridursi = 1 sopra ciascuno degli iperpiani coordinati uscenti dal punto $(0, \alpha_2 \dots \alpha_n)$, basterà determinare nella serie (2) i coefficienti c_r dalla relazione ricorrente

$$r^n c_r = \{ p(r-1) + q \} c_{r-1} ,$$

onde

$$c_r = \frac{q (q+p) (q+2p) \dots (q+(q-1) p)}{2^n 3^n \dots r^n}$$

- La serie

$$J(r) = 1 + \sum_{r=1}^{r=\infty} \frac{q(q+p)(q+2p)\dots(q+(r-1)p)}{2^n 3^n \dots r^n} v^r$$

converge effettivamente in tutto il piano. Si osserverà che nel caso n=2 l'equazione (1) è il tipo a cui può ridursi la equazione più generale a invarianti costanti

$$h = q - p$$
 $k = q$.

- Particolarmente notevole è il caso q=-p ovvero h=2k ove la equazione può integrarsi col metodo di Laplace. In tal caso la soluzione principale relativa ad un punto qualsiasi $(\alpha_1 \, \alpha_2)$ è data dalla formola

$$u = e^{p\alpha_1 \cdot (x_2 - \alpha_2)} \left\{ 1 - p \left(x_1 - \alpha_1 \right) \left(x_2 - \alpha_2 \right) \right\}.$$

- Dopo l'equazione $\frac{\Im^2 u}{\Im x_1 \Im x_2} = 0$, è questo, per quanto io so, il caso più semplice in cui la determinazione della soluzione principale riesce completamente.

Matematica. — Sulle operazioni funzionali distributive. Nota del Corrispondente S. Pincherle.

- Molte fra le più importanti operazioni che, eseguite sopra una funzione analitica di una variabile, danno pure come risultato una funzione analitica, godono della proprietà distributiva; se cioè A ci rappresenta una tale operazione ed $A(\varphi)$ il risultato che si ottiene eseguendola sopra alla funzione φ , si ha, indicando con ψ una seconda funzione

(1)
$$A(\varphi + \psi) = A(\varphi) + A(\psi)$$

cui va unita l'uguaglianza

$$A(c\varphi) = cA(\varphi)$$
,

dove c indica una costante. Tali operazioni verranno chiamate operazioni funzionali distributive, e la presente Nota ha per oggetto di esporre alcuni dei principi del loro calcolo.

- " 1. L'operazione A si applichi ad una funzione analitica $\varphi(t)$: il risultato $A(\varphi)$ sarà funzione analitica di una variabile che, per non togliere nulla alla generalità, denoteremo con lettera diversa da t ed indicheremo con x; il che non esclude che per molte classi speciali di operazioni funzionali x si possa riguardare come coincidente con t.
- " 2. Talvolta una data operazione funzionale A andrà applicata non a qualunque funzione analitica ma soltanto a quelle di una determinata classe; questa classe si dirà allora costituire un *Campo funzionale*, e l'operazione A si dirà applicabile in questo campo:
- $\varphi(t)$, dà come risultato una unica funzione di x, si dirà ad un valore; quando invece l'operazione, applicata alla $\varphi(t)$, è suscettibile di più determinazioni, cioè può rappresentare più funzioni di x, essa si dirà a più valori. Una operazione a più valori quando si applichi alla totalità delle funzioni analitiche, può benissimo essere ridotta ad un valore qualora ci si limiti ad applicarla in un conveniente campo funzionale.
- " Nei SS 4, 5 e 6 seguenti, si tratterà sia di operazioni ad un valore, sia di operazioni applicate in un campo funzionale in cui siano ridotte ad un valore.
- 4. Essendo A, B due operazioni che applicate alla funzione φ danno rispettivamente come risultato le funzioni f ed f_1 , indicherò con A + B l'operazione che applicata a φ dà per risultato $f+f_1$. Questa nuova operazione si dirà somma delle operazioni A e B; essa è ad un valore se A e B sono tali, e gode della proprietà commutativa ed associativa. Manifestamente A + B è un'operazione distributiva al pari di A e di B.
- $_{\circ}$ 5. Eseguendo sulla funzione φ l'operazione A, quindi sul risultato ottenuto l'operazione B, si dirà di avere eseguito su φ l'operazione BA, prodotto di A e B. Si scriverà dunque

$$B(A(\varphi)) = BA(\varphi)$$
.

- L'operazione BA è manifestamente distributiva al pari di A e B.
- " Il prodotto ... CBA di più operazioni funzionali distributive A, B, C, ... gode della proprietà associativa, ma non in generale della commutativa.
 - « Sono evidenti le uguaglianze

$$A(B + C) = AB + AC$$
, $(A + B) C = AB + BC$.

 $\tt `Applicando al risultato dell'operazione A la stessa operazione A, si avrà l'operazione A^2, applicando al risultato di A^2 l'operazione A e così$

di seguito, si giungerà all'operazione \mathbf{A}^m , potenza (intera positiva) di \mathbf{A} . È chiaro che

$$\mathbf{A}^m \mathbf{A}^n = \mathbf{A}^{m+n}$$
.

- Si indicherà con 1 l'operazione identità, l'operazione C cioè tale che

$$C(g) = g$$
;

ne risulta per ogni operazione A

$$AC = CA = A$$
.

= 6. Operazione inversa di A è una operazione A^{-1} tale che se $A(\varphi) = f$, sia $A^{-1}(f) = \varphi$, cioè tale che

$$A^{-1} A = 1$$
.

 ${\bf z}$ Da ciò il significato dell'operazione ${\bf A}^m$ anche per m intero negativo, come pure l'eguaglianza

$$A^0 = 1$$
.

- In generale, anche se l'operazione A è ad un valore, la sua inversa sarà a più valori. Basta a ciò che l'operazione A abbia qualche radice, che esista cioè una funzione $\omega(t)$ tale che sia $A(\omega)=0$; poichè se è $A(\varphi)=f$, sarà anche $A(\varphi+\omega)=f$ e l'operazione $A^{-1}(f)$ darà come risultato le funzioni φ , $\varphi+\omega$, ed in generale $\varphi+c\omega$, essendo c una costante arbitraria. Reciprocamente, quando l'operazione A^{-1} ammette più determinazioni, la differenza di due di esse è radice di A, cioè soluzione di $A(\varphi)=0$.
- El'operazione A^{-1} è distributiva, nel senso che fra le determinazioni possibili per $A^{-1}(f+f_1)$ si trova la somma di una qualunque delle determinazioni di $A^{-1}(f)$ con una qualunque di quelle di $A^{-1}(f_1)$. Ma se il campo funzionale delle g si limita opportunamente, potrà avvenire che anche l'operazione A^{-1} si riduca ad un valore ed allora vale senz'altro, per essa, la legge distributiva (1).
- \pm 7. Essendo A un'operazione funzionale distributiva, si chiamerà derivata funzionale di questa operazione e si indicherà con A' l'operazione definita da

(2)
$$\mathbf{A}'(\varphi) = \mathbf{A}(t\varphi) - x \mathbf{A}(\varphi).$$

(1) Un esempio mi sembra opportuno a fare intendere in quale modo possa essere fatta l'accennata limitazione del campo funzionale. L'operazione A sia tale che le sue radici siano funzioni analitiche regolari entro il cerchio di centro t=0 e di raggio r; è facile determinare una simile operazione A, prendendola p. e. sotto la forma del primo membro di un'equazione differenziale lineare in t. Il campo funzionale in cui si prende φ sia costituito dall'insieme delle funzioni analitiche regolari entro cerchi di centro t=0 e di raggi maggiori di r. Allora l'operazione $A^{-1}(f)$, se ha per una data f una determinazione nel campo funzionale indicato, ne avrà una sola, e per tali soluzioni A^{-1} gode della proprietà distributiva.

" Indicando con C il prodotto dell'operazione A per B, cioè C = BA, si avrà

$$C' = B'A + BA'$$

cioè alla derivazione funzionale è applicabile il teorema di Leibniz. Sia infatti

$$A(\varphi(t)) = \psi(z)$$
, $B(\psi(z)) = f(x)$;

sarà C' dato da

BA
$$(t\varphi(t))$$
 — x BA $(\varphi(t))$ = B A $(t\varphi(t))$ — z A $(\varphi(t))$ A + B $(z\psi(z))$ — x B $(\psi(z))$,

ossia

$$C' = BA' + B'A.$$

 $\mbox{``}$ In modo analogo si potrà definire la derivata seconda funzionale ${\bf A}''$, o derivata della derivata prima, e si troverà

$$\mathbf{A}''(\varphi) = \mathbf{A}'(t\varphi) - x\mathbf{A}'(\varphi) = \mathbf{A}(t^2\varphi) - 2x\mathbf{A}'(t\varphi) + x^2\mathbf{A}(\varphi),$$

ed in generale la derivata funzionale n^{sima} , che sarà data da

(4)
$$\mathbf{A}^{(n)} = \mathbf{A}(t^n \mathbf{\varphi}) - nx\mathbf{A}(t^{n-1}\mathbf{\varphi}) + \binom{n}{2}x^2\mathbf{A}(t^{n-2}\mathbf{\varphi}) - .. + (-1)^n x^n \mathbf{A}(\mathbf{\varphi}).$$

Essendo C = AB, si avrà

$$C'' = B''A + 2B'A' + BA''$$

ed in generale

$$C^{(n)} = B^{(n)} A + n B^{(n-1)} A' + \binom{n}{2} B^{(n-2)} A'' + \cdots + BA^{(n)},$$

come per la derivazione ordinaria.

* 8. Dalle relazioni (4) è facile di ricavare l'espressione di $\mathbf{A}(t^n \mathbf{g})$ in funzione di $\mathbf{A}(\mathbf{g})$ e delle sue derivate, e si ottiene

(5)
$$\begin{pmatrix}
\mathbf{A}(t\varphi) = x\mathbf{A}(\varphi) + \mathbf{A}'(\varphi), \\
\vdots \\
\mathbf{A}(t^{n}\varphi) = x^{n}\mathbf{A} + nx^{n-1}\mathbf{A}' + \binom{n}{2}x^{n-2}\mathbf{A}'' + \cdots + \mathbf{A}^{(n)}.
\end{pmatrix}$$

Sia ora una serie di potenze di t

$$\pi = \sum_{\gamma=0}^{\infty} c_{\gamma} t^{\gamma} ,$$

e si formi $\Lambda(\pi arphi)$; si avrà per le formule precedenti

$$\mathbf{A}(\pi \mathbf{\varphi}) = \sum_{\nu=0}^{\infty} c_{\nu} \mathbf{A}(t^{\nu} \mathbf{\varphi}) = \sum_{\nu=0}^{\infty} c_{\nu} (x^{\nu} \mathbf{A} + \nu x^{\nu-1} \mathbf{A}' + (\frac{\nu}{2}) x^{\nu-2} \mathbf{A}'' + \cdots + \mathbf{A}^{(\nu)})$$

ed ordinando per \mathbf{A} , \mathbf{A}' , \mathbf{A}'' , . . si ottiene formalmente il risultato

(6)
$$\Lambda(\pi\varphi) = \pi\Lambda(\varphi) + \pi'\Lambda'(\varphi) + \frac{\pi''}{1\cdot 2}\Lambda''(\varphi) + \dots + \frac{\pi'}{r!}\Lambda^{(q)}(\varphi) + \dots$$

che si può riguardare, nel calcolo funzionale, come l'analogo del teorema di Taylor nell'ordinaria teoria delle funzioni.

- Elipetiamo che questo risultato è qui ottenuto come meramente formale; per ogni singola operazione A sarà però sempre possibile di determinare campi funzionali per π e g, tali che in essi la formula precedente sia effettivamente applicabile.
- = Da questa formula facendo ${\it g}=1$ e cambiando π in ${\it g}$, funzione arbitraria, risulta l'altra

$$(7) \ \ A(g) = A(1)g + A'(1)\frac{g'}{1} + A''(1)\frac{g''}{1.2} + \dots + A^{(i)}(1)\frac{g^{(i)}}{r!} + \dots,$$

analoga allo sviluppo di Maclaurin. Da essa risulta come ogni operazione distributiva A sia, nel campo funzionale in cui è valida la formula precedente, rappresentabile mediante una serie a coefficienti funzioni di x e procedente per le derivate successive della funzione arbitraria $\boldsymbol{\varphi}$.

- 9. Veniamo ora a passare in rassegna alcune delle operazioni distributive più semplici, ed applichiamo le cose dette alla ricerca di una proprietà caratteristica per ciascuna di esse.
- =a) Moltiplicazione. L'operazione che consiste nel moltiplicare una funzione arbitraria g di t per una funzione data $\mu(t)$, è evidentemente distributiva; la chiameremo col nome di moltiplicazione per $\mu(t)$ o semplicemente di moltiplicazione; l'indicheremo poi con M_{ν} quando vorremo porre in evidenza la funzione moltiplicatrice, e quando ciò non sia necessario, semplicemente con M. In questo caso la variabile x coincide con t. Le operazioni M_{a_1} M_{a_2} , formano evidentemente un gruppo. La derivata di M sarà

$$M'(g) = M(tg) - tM(g)$$

e poichè $M(q) = \mu q$, viene M' = 0.

« Inversamente, se A è una operazione la cui derivata è nulla, sarà

$$A(tg) - x A(g) = 0,$$

onde, posto $A(1) = \varepsilon(x)$, risulterà

$$A(t) = x\epsilon(x)$$
, $A(t^n) = x^n\epsilon(x)$.

e per una funzione g(t) rappresentata da una serie di potenze di t,

$$A(g(t)) = g(x) \epsilon(x);$$

l'operazione A non differirà quindi dalla moltiplicazione.

- L'operazione M gode pure della proprietà che (MA)' = MA', come segue subito dal teorema espresso dalla (3).
- b) Derivazione. Indicheremo con D
 l'operazione di derivazione, in modo che

$$D(\mathbf{g}) = \frac{d\mathbf{g}}{dt}$$

Applicando la (2), troveremo per derivata funzionale di D la

$$D'(\varphi) = D(t\varphi) - t D(\varphi) = \varphi;$$

talchè si può scrivere $\mathrm{D}'=1$. La derivata seconda funzionale di D sarà zero.

- " Considerando il prodotto MD , si vede, applicando la (3), che la sua derivata è la moltiplicazione $\mathrm{M}.$
- « Se si cerca l'operazione A più generale la cui derivata seconda funzionale sia zero, si trova senza difficoltà che essa è

$$A = MD + M_1$$
.

essendo M ed M1 operazioni di moltiplicazione.

"c) Forme differenziali lineari. — L'operazione

$$F = M_{a_0} + M_{a_1}D + M_{a_2}D^2 + \cdots M_{a_n}D^r$$
,

dove a_0 , a_1 ,... a_r sono funzioni date, si chiamerà forma differenziale lineare dell'ordine r. Essa è manifestamente distributiva. Formando la derivata funzionale di F per mezzo della (2), e notando che

$$D^{m}(t\varphi) - t D^{m}(\varphi) = m D^{m-1}(\varphi)$$
,

si ottiene

$$F' = M_{a_1} + 2M_{a_2} D + 3M_{a_3} D^2 + \cdots + r M_{a_r} D^{r-1}$$
.

Perciò la derivazione funzionale delle forme differenziali lineari si eseguisce colla stessa regola della derivazione ordinaria nelle funzioni razionali intere.

"Applicando alla F la formola (6), si ottiene

$$F(\pi g) = \pi F(g) + \pi' F'(g) + \dots + \frac{\pi^{(r)}}{r!} F^{(r)}(g),$$

la quale, sviluppata che sia, dà una identità che, sotto un'altra forma, è nota fino dallo scorso secolo, e si trova spesso usata dal D'Alembert (*Théorie des vents, théorie de la lune*).

- "Si noti che la derivata funzionale $r+1^{sima}$ di F è nulla. Reciprocamente, se si cerca una operazione A tale che $A^{(r+1)}$ sia nulla, si trova senza difficoltà che A è una forma differenziale lineare dell'ordine r al più.
 - " d) L'operazione θ . Con θ si rappresenta la operazione definita da

$$\theta(\varphi(t)) = \varphi(t+1).$$

Formandone la derivata funzionale, si ottiene

$$\theta' = \theta$$
,

ossia l'operazione θ ha per derivata funzionale sè stessa (1). Reciprocamente

⁽¹⁾ In tutti i trattati si nota la formula simbolica $e^{\frac{d}{dt}}$ per l'operazione θ ; ossia, colle nostre notazioni, $\theta = e^n$. È notevole il fatto che a questa stessa espressione simbolica conduce la proprietà espressa da $\theta' = \theta$, tenuto conto dell'altra D' = 1.

l'operazione più generale che abbia per derivata se stessa è la M θ . Sia infatti

$$A' = A$$
, ossia $A(t\varphi) - xA(\varphi) = A(\varphi)$,

posto $A(1) = \varepsilon(x)$, ne risulta

$$A(t) = (x+1) \epsilon(x), \dots A(t^n) = (x+1)^n \epsilon(x),$$

e quindi, essendo q(t) una funzione presa in un campo funzionale conveniente (1),

$$A(\varphi) = \varepsilon(x)\varphi(x+1).$$

- Per l'operazione θ^a si ha

$$(\theta^a)' = a\theta^a$$
;

per l'operazione \mathcal{A} (differenza finita) si ha $\mathcal{A}'=\theta$; per la forma lineare alle differenze

$$M_{a_0} + M_{a_1} \theta + M_{a_2} \theta^2 + \cdots + M_{a_r} \theta^r$$
,

la derivata funzionale è

$$M_{a_1}\theta + 2M_{a_2}\theta^2 + \cdots + rM_{a_r}\theta^r$$
.

e) La sostituzione. — L'operazione che consiste nel sostituire, in una funzione arbitraria φ di t, alla t una funzione data μ (t), è evidentemente distributiva. La chiameremo col nome di sostituzione e l'indicheremo con S_{μ} o semplicemente S, secondo che sarà o no necessario di porre in evidenza la funzione $\mu(t)$ che si sostituisce a t. Le operazioni S_{μ_1} , S_{μ_2} , ... formano evidentemente un gruppo.

- Si ha

$$S(\varphi \psi) = S(\varphi) S(\psi),$$

cioè l'operazione S è distributiva oltre che rispetto all'addizione, anche rispetto alla moltiplicazione; e questa proprietà è caratteristica per l'operazione S. Infatti, se A è tale che $A(\varphi\psi) = A(\varphi) \, A(\psi)$, ne risulterà, posto $A(t) = \omega(x)$, che $A(t^n) = \omega^n(x)$ e quindi, essendo $\varphi(t)$ serie di potenze di t,

$$A(g(t)) = g(\omega(x))$$
.

- L'operazione S non può avere radici, onde segue che S^{-1} è pure ad un valore.
 - La derivata funzionale di Su è data immediatamente da

$$S'_{\mu} = (\mu(t) - t) S_{\mu};$$

onde l'operazione S soddisfa ad una relazione della forma

(8)
$$S' = \lambda S$$

(i) Il campo funzionale è qui l'insieme delle funzioni regolari in un cerchio di centro t=0 e di raggio superiore all'unità.

dove λ è una funzione data; una tale relazione si può chiamare un'equazione differenziale funzionale. Inversamente, ogni operazione soddisfacente ad un'equazione (8) è della forma MS; infatti dalla (8) risulta

$$S(tq) = (\lambda(x) + x) S(q)$$
,

posto dunque $S(1) = \varepsilon(x)$, viene

$$S(t) = (\lambda(x) + x) \varepsilon(x), \dots S(t^n) = (\lambda(x) + x)^n \varepsilon(x)$$

ed essendo $\varphi(t)$ una serie di potenze di t,

$$S(\varphi) = \varphi(\lambda(x) + x) \varepsilon(x)$$
,

c. d. d.

 ϵ 10. Si può proporre la ricerca delle operazioni funzionali commutabili colla derivazione. Queste operazioni formano evidentemente un gruppo. Sia A una tale operazione; posto $A(1) = \epsilon(x)$, verrà per la proprietà ammessa:

$$DA(1) = \varepsilon'(x) = A(o)$$

e supposta l'operazione A ad un valore e quindi A(o) = 0, risulta $\epsilon(x) = c$, indicando c una costante. Ne segue

$$A(t) = cx + c_1,$$

come si vede subito applicando la proprietà DA = AD, indi

$$A(t^2) = \frac{cx^2}{2} + c_1x + c_2;$$

in generale $A(t^n)$ sarà un polinomo razionale intero in x, tale che

$$\frac{d\mathbf{A}(t^n)}{dx} = n\mathbf{A}(t^{n-1}).$$

"Tali polinomi sono quelli già studiati dal prof. Appell (¹), e pertanto l'operazione $A(\boldsymbol{\varphi})$ non è altro che quella che egli definisce nel § 12 della citata sua Memoria. Si ottiene dunque questo risultato, che il gruppo delle operazioni funzionali distributive commutabili colla derivazione è il gruppo delle operazioni di Appell (²) ».

Matematica. — Sulle superficie algebriche con infinite trasformazioni projettive in sè stesse. Nota di Gino Fano, presentata dal Socio Cremona.

- "Delle superficie (e in particolare delle superficie algebriche) con infinite trasformazioni projettive in sè stesse si è occupato il sig. Enriques in una Memoria presentata al R. Istituto Veneto di Scienze, Lettere ed Arti
 - (1) Annales de l'École Normale Sup., S. II, T. IX, 1880.
 - (2) Cfr. la mia Memoria Sur certaines opérations etc. Acta Math., T. X, 1887.