ATTI

DELLA

REALE ACCADEMIA DEI LINCEI

ANNO CCXCII

1895

SERIE QUINTA

RENDICONTI

Classe di scienze fisiche, matematiche e naturali.

VOLUME IV.

1° SEMESTRE

ROMA
TIPOGRAFIA DELLA R. ACCADEMIA DEI LINCEI

PROPRIETÀ DEL CAV. V. SALVIUCCI

1895

- « sotto forma di deviazioni dalla verticale, aventi il periodo completo di
- parecchi secondi e la forma sinusoidale, sono paragonabili al moto ondoso
- e del mare, oppure sono perfettamente orizzontali, come conseguenza di con-
- trazioni e rarefazioni, prodotte da una successione di urti propagantisi - longitudinalmente sulla superficie da un centro lontano? -
- Confido di poter rispondere decisivamente a tale questione alla prima occasione, mercè i nuovi metodi che ho ideati.
- Del resto tali divergenze d'opinioni sparse fra coloro che indagano i segreti naturali col metodo sperimentale, fanno bene anzichè male alla scienza. Anzichè abbattute d'un sol colpo meritano essere coltivate, perchè atte ad inspirare applicazioni che nessuno avrebbe immaginate a priori, e che già in oggi vanno rischiarando le tenebre in questo grado sublime della nostra ignoranza ».

Chimica. — Il bromoformio in crioscopia (1). Nota di G. Ampola e C. Manuelli, presentata dal Socio Paternò.

- Le numerose ricerche crioscopiche compiute negli ultimi anni, specialmente in Italia, hanno reso probabile che le anomalie alla legge fondamentale di Raoult e van't Hoff dipendano principalmente o dalle relazioni di costituzione, tra solvente e sostanza sciolta, o dalla funzione chimica. Il materiale sperimentale fino ad ora raccolto, non è sufficiente per poterne trarre delle conclusioni generali, con la necessaria sicurezza. L'importanza dei risultati che si possono ottenere da un esteso studio, ci ha spinti ad intraprendere alcune ricerche su questo campo; in questa nota rendiamo conto dei risultati ottenuti impiegando come solvente il bromoformio.
- La costituzione chimica semplice, il punto di fusione e le estese facoltà solventi di questa sostanza, ci erano garanzia che si sarebbe prestata bene al nostro scopo.
- Il bromoformio da noi impiegato proveniva dalla fabbrica Kahlbaum di Berlino e fu purificato lavandolo con acqua alcalina, distillandolo a pressione ridotta, cristallizzandolo e facendolo gocciolare. Il suo punto di congelamento era a 7°.80, e si mantenne tale per tutto il tempo che durarono le esperienze i risultati delle quali sono descritti nelle tavole seguenti.
- " Il termometro adoperato era della casa Baudin di Parigi, diviso in $^{1}/_{50}$ di grado, e segnava da 3º a + 9°.

⁽¹⁾ Lavoro eseguito nel R. Istituto chimico di Roma.

I. Sostanze neutre.

Benzol PM = 78

N. d'ordine	Concentra-	Abbass. termom.	Coeffic.	Abbass.	
1	0.68	0.13	1.911	149.058	
2	0.735	1.38	1.850	144.300	
3	1.130	2.035	1.800	140.600	
4	2.775	4.76	1.715	133.770	
5	3.390	5.745	1.691	131.898	
6	3.718	6.22	1.672	130.416	
7	4.159	6.90	1.663	128.856	

Paraxilene PM = 104.

8	0.1711	0.24	1.403	145.964
9	0.6048	0.84	1.388	144.352
10	1.1570	1.60	1.382	143.728
11	2.2434	3.08	1.372	142.688
12	2.6960	3.625	1.344	139.776
13	3.1403	4.08	1.299	135.096
14	3.8610	5.015	1.297	134.888
15	4.6881	6.00	1.283	132.432

Naftalina PM = 128.

16	0.2727	0.32	1.173	150.144
17	0.6795	0.78	1.148	146.944
18	1.5225	1.725	1.132	144.896
19	2.5345	2.81	1.108	141.824
20	4.3183	4.72	1.093	139.904
21	6.6349	7.16	1.079	138.112

Paraldeide PM = 132

22	0.2538	0.285	1.083	142.956
23	1.4026	1.51	1.076	142.032
24	2.6210	2.84	1.083	142.956
25	3.1722	3.43	1.081	142.692
26	3.5739	3.87	1.082	142.824
27	4.1379	4.44	1.073	141.636
28	5.6857	5.98	1.051	138.732
29	6.0321	6.40	1.060	139.920

Ossalato d'etile PM = 114.

30	0.8039	0.82	1.020	116.280
31	1.5262	1.545	1.012	115.268
32	2.5326	2.54	1.002	114.228
33	3.3256	3.35	1.007	114.798
34	4.4093	4.39	0.995	113.430
35	5.4974	5.46	0.993	113.202
36	6.2565	6.20	0.990	112.860
37	7.6270	7.68	1.006	114.684

Tiofene PM = 84.

N. d'ordine	Concentra- zione	Abbass. termom.	Coeffic.	Abbass.	
38	0.2915	0.51	1.749	146.910	
39	1.0018	1.695	1.691	142.004	
40	2.3127	3.805	1.645	138.180	
11	2.8727	4.68	1.628	136.752	
42	3.3349	5.34	1.601	134.484	
43	4.2624	6.74	1.581	132.804	
44	5.4856	8.48	1.545	129.780	

Cloroformio. PM = 120

45	0.1156	0.14	1.211	145.320
46	0.4408	0.47	1.068	128.16
47	1.7928	1.89	1.054	126.48
48	3.0534	3.10	1.015	121.80
49	4.2092	4.185	0.994	119.28
50	4.9495	4.815	0.972	116.64
51	5.5981	5.36	0.957	114.84
52	6.1207	5.765	0.941	112.92
53	6.8636	6.36	0.926	111.52

II. Acidi.

$Acido \ acetico \ PM = 60$

54	0.2240	0.28	1.250	92.50
55	0.8210	0.945	1.151	85.175
56	1.9405	2.08	1.077	79.698
57	3.1531	3.125	0.991	73.334
58	4.9923	4.585	0.918	55.080
5 9	5.3711	4.84	0.901	54.060
60	6.0743	5.32	0.875	52.500
61	6.4929	5 58	0.859	51.540
62	7.4944	6.185	0.825	49.500

Acido isobutirrico PM = 88

63	0.6924	0.695	1.002	88.176
64	1.5792	1.265	0.801	70.488
65	2.7539	2.07	0.751	66.088
66	4.0937	2.90	0.708	62.304
67	5.2204	3.66	0.701	61.688
68	6.6034	4.43	0.670	58.960
69	7.4497	4.83	0.648	57.024
70	8.3523	5.32	0.636	55.968
71	11.2364	6.76	0.601	52.888

III	7	100			- 1	٥.
111		HIV	-1	10)1	Ι.

Fenol PM = 94

N. d'ordine	Concentra- zione	Abbass. termom.	Coeffic.	Abbass. molecolare	
72	0.1987	0.28	1.459	137.146	
73	0.6016	0.775	1.288	121.072	
74	1.1596	1.345	1.159	108.946	
75	2.0698	2.04	0.985	93.590	
- 76	3 1519	2.69	0.853	80.182	
77	3.6155	2.92	0.807	75.858	
78	4.1018	3.15	0.770	72.380	
79	4.6432	3.40	0.734	68.996	
80	5.3482	3.72	0.695	65.330	
81	7.9757	4.78	0.599	56.306	
82	9.1087	5.20	0.570	53 58	

$Timol\ P\ M = 150$

83	0.1913	0.18	0.940	141.00
84	0.6833	0.62	0.907	136.05
85	1.2577	1.10	0.874	131.10
86	2.1183	1.76	0.830	124.50
87	2.7428	2.21	0.805	120.75
88	3.5566	2.74	0.770	115.50
89	4.5852	3.34	0.728	109.26
90	5.9726	4.10	0.686	102.90
91	7.9647	5.06	0.635	95.25
92	10.1607	6.00	0.590	88.50

IV. Alcooli.

Etilalcool PM = 46

93	0.1203	0.31	2.576	118.496
94	0.4181	1.03	2.464	113.344
95	0.8331	1.685	2.022	93.012
96	1.3222	2.245	1.697	78.062
97	1.9382	2.705	1.395	67.070
98	2.8577	3.23	1.130	51.980
99	4.9918	4.065	0.814	37.444
100	6.0976	4.41	0 723	30.158
101	7.4723	4.75	0.635	29.210
102	9.6242	5.235	0.543	24.978
103	11.8716	5.42	0.456	21.976
104	15.8477	5.95	0.353	16.238

Trimetil-carbinol PM = 74

N. d'ordine	Concentra- zione	Abbass. termom.	Coeffic.	Abbass. molecolare
105	0.1785	0.32	1.792	132.608
106	0.5882	1.00	1.700	125.800
107	1.1949	1.59	1 330	98.420
108	2.2179	2.78	1.253	92.722
109	3.8275	3.925	1.025	75.650
110	5.4871	4.70	0.854	63.196
111	6.0642	4.95	0.801	59.274
112	7.0688	5.345	0.756	55.944
113	7.3592	5.425	0.737	54.438
114	8.3510	5.60	0.670	49.580
			_	

Alcool benzilico PM = 108

115	0.4441	0.56	1.283	138.564
116	0.9067	1.055	1.163	125.604
117	1.5745	1.65	1.047	113.076
118	2.5133	2.32	0.923	99.684
119	3.9513	3.16	0.799	86.292
120	4.8184	3.59	0.745	80.460
121	6,0183	4.18	0.694	74.952
122	7.5291	4.86	0.645	69.660
123	9.7272	5.80	0.596	64.380
124	12.5139	7.04	0.562	60.696

Etere bimetilico della glicerina PM = 120

	1		1~0	
125	0.2993	0.34	1.135	136.200
126	0.8487	0.94	1.119	134.280
127	1.6961	1.79	1.055	126.600
128	2.7464	2.76	1.004	120.480
129	4.0957	4,01	0.978	117.360
130	5.4025	5.14	0.951	114.120
131	6.2142	5.825	0.937	112.44
132	7.0903	6.54	0.922	110.64
133	8.1348	7.53	0.925	111.000

V. Alcaloidi.

Anilina PM = 93

		7 - 7	- 0.0	
134	0.2120	0.35	1.650	153 450
135	0.7672	1.225	1.596	148.428
136	1.6470	2.52	1.530	142.290
137	3.0787	4.58	1.487	138.291
138	3.4079	4.99	1.464	136.152
139	3 9527	5.70	1.442	134.106
140	4.6002	6.46	1.404	130.572
141	1 0000	7 90	1 404	100.000

Dimetilanilina PM = 121

Chinolina PM = 129

N. d'ordine	Concentra- zione	Abbass. termom.	Coeffic.	Abbass. molecolare	N. d'ordine	Concentra- zione	Abbass. termom.	Coeffic.	Abbass.
142	0.7438	0.89	1.196	144.716	149	0.3919	0.485	1.237	159.573
143	1.2692	1.52	1.197	144.837	150	1.2774	1.49	1.166	150,414
144	1.7578	2.13	1.211	146.531	151	2.4824	3.18	1.123	144.867
145	2.3771	2.88	1.215	147.015	152	3.4754	3.88	1.116	143.964
146	3.1379	3.75	1.193	144.353	153	4.5224	5.11	1.129	145.641
147	4.4031	5.30	1.203	145.563	154	5.5309	6.18	1.118	144.222
148	5.4193	6.42	1.184	142.264	155	6.4594	7.26	1.123	144.867

Piridina PM = 79.

156	0.5349	0.35	0.6541	51.673
157	1.0324	1.205	1.1671	92.200
158	1.5092	2.04	1.3516	106,776
159	2.2245	3.31	1.4879	117.534
160	2.7535	4.24	1.5390	121.581
161	3.6358	5.78	1.589	125.531
162	4.0984	6.58	1.605	126.795
163	4.3058	7.06	1.639	129.481

- " Dall'esame di questi risultati si scorge che il bromoformio come solvente nelle ricerche crioscopiche si comporta in modo corrispondente alla benzina studiata da Paternò (¹) ed al paraxilene studiato da Paternò e Montemartini (²), almeno nei casi più generali; difatti:
- 1. Hanno un comportamento che può dirsi normale la benzina, la naftalina, il paraxilene, la paraldeide, il tiofene, il cloroformio; l'ossalato di etile fa eccezione, e dà un abbassamento molecolare molto al di sotto del normale, ma che si mantiene notevolmente costante col variare la concentrazione; lo stesso fenomeno del resto lo presenta pure sciolto nel paraxilene; difatti in questo solvente, per concentrazioni che variano da 0,657 a 7,619 %, l'abbassamento molecolare varia tra 40,00 e 39,57 (3) e nel bromoformio per concentrazioni comprese tra 0,8039 e 7,6270 % l'abbassamento si mantiene tra 115 e 113 circa; il comportamento nella benzina non può considerarsi del tutto diverso, secondo le esperienze di Auwers (4). Il tiofene che nella benzina si comporta in modo anomalo, nel bromoformio invece si comporta normalmente corrispondentemente a cio che avviene nel paraxilene.
 - 2. Di acidi non ne abbiamo studiato che due, l'acetico e l'isobutir-

⁽¹⁾ Gazzetta chimica, XIX, 640.

⁽²⁾ Gazzetta chimica, XXIV, 2.

⁽³⁾ Paternò e Montemartini, loco citato.

⁽⁴⁾ Zeit. f. phys. Chemie, t. XII, 693.

rico, ed i valori ottenuti che oscillano con molta approssimazione attorno alla metà dei normali, non lasciano dubbio, che anche gli acidi si comportino col bromoformio come con la benzina ed il paraxilene.

- 3. Per i due fenoli studiati l'analogia con la benzina ed il paraxilene non potrebbe essere più completa. Per il fenol comune già in soluzioni diluite si ha un abbassamento molecolare molto inferiore al normale, e questo valore si riduce a meno della metà per concentrazioni poco superiori al 4 º/o. Pel timol l'anomalia è meno pronunziata ed in soluzioni diluite si hanno valori pressochè normali e che decrescono molto più lentamente aumentando la concentrazione.
- 4. Il comportamento degli alcooli corrisponde completamente a quello nella benzina e nel paraxilene. In soluzioni diluite si hanno valori normali o quasi, ma questi per l'abbassamento molecolare decrescono rapidamente col crescere la concentrazione sino ad essere molto piccoli per concentrazioni che di poco superano il 10 °/o; nè il fenomeno caratteristico dei composti a funzione alcoolica si limita ai primi termini.
- 5. Quanto agli alcaloidi, si comportano in modo affatto normale la dimetilanilina e la chinolina; per l'anilina l'andamento del fenomeno è normale in soluzioni diluite ma aumentando la concentrazione i valori dell'abbassamento molecolare decrescono, come avviene per soluzioni nella benzina e nel paraxilene.
- « Strano è il comportamento della piridina, ma su questo ci proponiamo di ritornare fra breve.
- Dalle nostre esperienze, benchè non sieno numerosissime, ci sembra risulti in modo evidente, che il bromoformio, come solvente nelle ricerche crioscopiche, si comporti con le sostanze di varia funzione chimica, esattamente come la benzina ed il paraxilene. Altre conclusioni d'ordine generale, non ci pare potere per ora trarre dalle nostre esperienze; solo diremo che queste ci sembra confermino quanto ha recentemente affermato il prof. Paternò, che cioè, nelle anomalie alla legge di Raoult bisogna tener molto conto della funzione chimica oltrechè dell'analogia di costituzione e dell'isomorfismo tra sostanza sciolta e solvente; nel bromoformio si comportano in modo anormale quelle sostanze che dànno valori anormali nella benzina e nel paraxilene; mentre il cloroformio che ha con esso così stretta relazione di costituzione si comporta normalmente.
- La costante da scegliersi come abbassamento molecolare del bromoformio non abbiamo potuto calcolarla con la formola di van't Hoff, non essendo noto il calore latente di fusione.
- « Scegliendo tra le esperienze fatte quelle relative a sostanze che hanno un comportamento più regolare, e tenendo conto dei dati forniti da soluzioni nelle quali l'abbassamento termometrico è compreso tra 0°,5 e 4° si hanno le seguenti medie:

Benzina (2-	-3)		.0		Ų.				$142,\!45$
Naftalina (10-11-1	2) .							144,55
Paraxilene	(17-18-	19) .			•				145,37
Paraldeide	(22-23-2	24-25-	26)						142,62
Tiofene (38	3-39-40)			1					142,36
Anilina (13	35-136)								145,46
Dimetilanil									
Chinolina (
	di cui la								

e crediamo quindi che come costante dell'abbassamento molecolare si possa scegliere il numero 144.

"Con la regola di Raoult, che una molecola di una sostanza qualunque sciolta in 100 molecole di un solvente qualunque produce nel punto di congelamento del solvente un abbassamento costante di 0°.62 si calcola il valore 156,86".

Chimica. — Sull'azione del cloridrato d'idrossilammina sul gliossale (1). Nota di A. Miolati, presentata dal Socio Cannizzaro.

- " Preparando la gliossima per azione del cloridrato d'idrossilammina sul gliossale avevo osservato nel prodotto grezzo che si otteneva, un comportamento non conforme a quello della gliossima.
- « Scaldato su lamina di platino, invece di fondere, come fa la gliossima, esplodeva, e, a seconda delle diverse preparazioni, più o meno violentemente. Anche il suo comportamento col cloruro di acetile o coll'anidride acetica non era normale. Mentre la gliossima si scioglie in questi reagenti formando i prodotti acetilati e le soluzioni che così si ottengono non si alterano col riscaldamento; il prodotto diretto dall'azione del cloridrato d'idrosslammina sul gliossale scaldato con cloruro di acetile od anidride acetica si scompone violentemente, carbonizzandosì in gran parte.
- "Fu appunto una di queste scomposizioni violente, che non fu per me senza conseguenze, che m'indusse a ricercare la causa di questo comportamento. E potei così trovare che, nell'azione dell'idrossilammina sul gliossale in soluzione acida, accanto alla gliossima, si forma in quantità più o meno forti un'altro composto dotato di proprietà esplosive rimarchevoli, e che si può separare approfittando della diversa sua solubilità nei solventi organici ordinarî (²).
 - (1) Lavoro eseguito nell'Istituto chimico dell'Univesità di Roma.
- (2) Volendo preparare della gliossima, è consigliabile di fare agire sul gliossale una soluzione neutra o alcalina di idrossilamina; in queste condizioni non ho mai osservato la formazione del composto esplosivo.