ATTI

DELLA

REALE ACCADEMIA DEI LINCEI

ANNO CCXCIII. 1896

SERIE QUINTA

RENDICONTI

Classe di scienze fisiche, matematiche e naturali.

VOLUME V.

2° SEMESTRE

ROMA
TIPOGRAFIA DELLA R. ACCADEMIA DEI LINCEI

PROPRIETÀ DEL CAV. V. SALVIUCCI

1896

sare pacificamente da critici (¹) sagacissimi come il Bertrand e il Darboux, non solo è falsa, ma potrebbe anche dirsi evidentemente falsa, in quanto che la smentiscono i moti più chiari e più comuni, come il moto ellittico dei pianeti, il moto del pendolo conico o piano, il moto dei proietti.....

È vera invece la proposizione inversa, cioè: Se il sistema passa per una posizione, ove potrebbe stare in equilibrio, ivi la forza viva è massima, o minima, o massima-minima. È questa la proposizione in realtà dimostrata da Lagrange.

Meccanica. — Sul moto di un corpo rigido intorno ad un punto fisso. Nota di T. Levi-Civita, presentata dal Socio Beltrami.

Il lettore voglia riferirsi ad una Nota apparsa non è guari in questi Rendiconti col medesimo titolo, qui sopra indicato (2).

4. Le considerazioni gruppali si possono usufruire con vantaggio nel ricercare se esistono funzioni delle forze V, per cui si abbiano, oltre all'integrale delle forze vive, due altri integrali lineari delle equazioni del moto e per cui quindi la integrazione si riduca alle quadrature.

Se una equazione $L = \cos t$, il cui primo membro L sia lineare (nel qual caso, come è facile stabilire, si può addirittura assumere omogeneo (3)) nelle velocità, si suppone integrale pel moto del corpo, quando agiscono forze, essa riesce integrale anche in assenza di forze; dunque L, espresso per le p, è necessariamente una combinazione lineare a coefficienti costanti di L_1f , L_2f , L_3f : Una combinazione L_1f siffatta sarà poi integrale, allora (4) e solo allora che L_1f cost, L_2f cost, occorre adunque che il potenziale L_1f delle forze attive soddisfaccia simultaneamente a due equazioni indipendenti:

$$Y_1V = g_{11} Z_1V + g_{12} Z_2V + g_{13} Z_3V = 0$$

 $Y_2V = g_{21} Z_1V + g_{22} Z_2V + g_{23} Z_3V = 0$,

i coefficienti numerici g, potendo essere scelti in modo arbitrario. Affinchè due equazioni indipendenti $Y_1V=0$ e $Y_2V=0$ abbiano una soluzione comune (diversa da $V=\cos t$) è necessario e basta che il sistema $Y_1f=0$, $Y_2f=0$ sia completo, cioè che $(Y_1Y_2)f$ sia una combinazione lineare, e, in causa delle (5), a coefficienti costanti, di Y_1f , Y_2f . Ne viene che Y_1f , Y_2f determinano un sottogruppo a due parametri di G_3 come reciprocamente ad ogni sottogruppo ∞^2 di G_3 corrisponde un potenziale dotato della voluta pro-

^{(1) «} Cette critique minutieuse qui porte parfois sur le sens d'un mot...» (Bertrand, Avertissement de la troisième édition).

⁽²⁾ V. questi Rendiconti, p. 3.

⁽³⁾ Cfr. la Nota citata: Sugli integrali algebrici, ecc.

⁽⁴⁾ Infatti la condizione affinche $L=\cos t$ sia integrale, quando agiscono le forze derivanti dal potenziale V, è che le due funzioni T-V, L sieno in involuzione; ora (T-V,L)=0, si scinde precisamente in (T,L)=0, (L,V)=0.

prietà. Ora esistono in fatto sottogruppi a due parametri del gruppo G_3 , disgraziatamente però soltanto immaginarî e sarebbe facile riconoscere che tali sono altresì le V corrispondenti. Senza soffermarci su ciò, diamo un esempio di funzione potenziale (immaginaria), per cui le equazioni del moto si possono integrare mediante quadrature; la cosa non ha manifestamente alcun significato meccanico, ma presenta, se non erro, un certo interesse analitico, poichè non so che sia mai stata osservata la possibilità di integrare mediante quadrature le equazioni corrispondenti al moto di un corpo rigido, quando le tre costanti A, B, C sono fra loro distinte e i secondi membri (forze nel caso reale) non sono tutti nulli.

Come sottogruppo ∞² di G₃ si può assumere:

$$Z_1f + iZ_2f, Z_3f$$
,

poichè:

$$\{(Z_1 + i Z_2) Z_3 \} f = (Z_1 Z_3) f + i (Z_2 Z_3) f = Z_2 f - i Z_1 f = -i (Z_1 f + i Z_2 f).$$

Il sistema, che determina V, è:

$$\left\{ \begin{array}{l} \mathbf{Z}_{1}\mathbf{V} + i\mathbf{Z}_{2}\mathbf{V} = 0\\ \mathbf{Z}_{3}\mathbf{V} = 0 \end{array} \right.$$

ossia in coordinate euleriane (veggansi le (4')):

$$\left\{ \left(-\operatorname{sen} \varphi \frac{\Im \mathbf{V}}{\Im \vartheta} - \frac{\cos \varphi}{\operatorname{sen} \vartheta} \frac{\Im \mathbf{V}}{\Im f} - \cos \varphi \frac{\cos \vartheta}{\operatorname{sen} \vartheta} \frac{\Im \mathbf{V}}{\Im \varphi} \right) + i \left(\cos \varphi \frac{\Im \mathbf{V}}{\Im \vartheta} - \frac{\sin \varphi}{\operatorname{sen} \vartheta} \frac{\Im \mathbf{V}}{\Im f} - \frac{\sin \varphi \cos \vartheta}{\operatorname{sen} \vartheta} \frac{\Im \mathbf{V}}{\Im \varphi} \right) = 0$$

$$\frac{\Im \mathbf{V}}{\Im \varphi} = 0$$

La prima di queste equazioni, ridotta a mezzo della seconda, diviene:

$$e^{i\varphi}\Big\{i\,\frac{\Im \mathbf{V}}{\Im \vartheta}-\frac{1}{\mathop{\rm sen}\nolimits\vartheta}\,\frac{\Im \mathbf{V}}{\Im f}\Big\}=0\ ,$$

donde, integrando: $V = F_1 (if + \log \operatorname{tg} \frac{\iota}{2} \vartheta)$, che può anche essere scritta: $V = F_2 (e^{if + \log \operatorname{tg} \frac{\iota}{2} \varpi}) = F_2 \left(\frac{\operatorname{sen} \vartheta \operatorname{cos} f + i \operatorname{sen} \vartheta \operatorname{sen} f}{1 + \operatorname{cos} \vartheta} \right)$, F_2 essendo, come F_1 , simbolo di funzione arbitraria.

Formiamo le equazioni differenziali, che, corrispondentemente alla funzione V, riescono integrabili per quadrature. Le equazioni del moto sono, come si sa:

(7)
$$\begin{cases} A \frac{dp}{dt} = (B - C) qr + M_x \\ B \frac{dq}{dt} = (C - A) rp + M_y \\ C \frac{dr}{dt} = (A - B) pq + M_z \end{cases}$$

dove \mathbf{M}_x , \mathbf{M}_y , \mathbf{M}_z rappresentano le componenti della coppia attiva e si intendono in generale, come pure p, q, r, espressi mediante le coordinate lagrangiane del sistema. Riferendoci alle variabili \mathcal{F} , f, $\boldsymbol{\varphi}$, si ha:

$$\begin{array}{ll} p = & \operatorname{sen} f \, \vartheta' + \operatorname{sen} \, \vartheta \, \cos f \, \varphi' \\ q = & -\cos f \, \vartheta' + \operatorname{sen} \, \vartheta \, \operatorname{sen} \, f \, \varphi' \\ r = & \cos \vartheta \, \varphi' - f' \end{array}$$

e i valori di M_x , M_y , M_z , che corrispondono ad una data funzione potenziale $V(\vartheta, f, \varphi)$, si possono determinare, eguagliando le due espressioni del lavoro elementare, compiuto dal corpo rigido, δV e $(pM_x + qM_y + rM_z)dt$.

Supponendo che V sia la nostra funzione $F_2\left(\frac{\sin\vartheta\cos f + i\sin\vartheta\sin f}{1 + \cos\vartheta}\right)$, si trova, dopo facili riduzioni:

$$\begin{split} \mathbf{M}_{x} &= -i \frac{ \sec \vartheta \cos f + i \sec \vartheta \sec f}{1 + \cos \vartheta} \cdot \frac{\cos f \cos \vartheta - i \sec f}{\sec \vartheta} \cdot \mathbf{F'}_{z} \\ \mathbf{M}_{y} &= - - \frac{ \sec \vartheta \cos f + i \sec \vartheta \sec f}{1 + \cos \vartheta} \cdot \frac{\cos f - i \sec f \cos \vartheta}{\sec \vartheta} \cdot \mathbf{F'}_{z} \\ \mathbf{M}_{z} &= -i \frac{ \sec \vartheta \cos f + i \sec \vartheta \sec f}{1 + \cos \vartheta} \cdot \mathbf{F}_{z'} \end{split} ,$$

 $F_{z'}$ designando la derivata di F_{z} rispetto al suo argomento; siccome $\frac{\sec \vartheta \cos f + i \sec \vartheta \sec f}{1 + \cos \vartheta} \cdot F_{z'}$ può anch' essa ritenersi una funzione arbi-

traria di $\frac{\sin\vartheta\cos f + i\sin\vartheta\sin f}{1 + \cos\vartheta}$ così potremo porre più semplicemente:

$$\frac{\operatorname{sen} \vartheta \cos f + i \operatorname{sen} \vartheta \operatorname{sen} f}{1 + \cos \vartheta} \operatorname{F'}_{2} = \operatorname{F} \left(\frac{\operatorname{sen} \vartheta \cos f + i \operatorname{sen} \vartheta \operatorname{sen} f}{1 + \cos \vartheta} \right).$$

Alle equazioni (7) è ora possibile attribuire una forma, che ricorda quella del moto di un corpo pesante: Introducendo i coseni di direzione $\gamma_1 = \operatorname{sen} \vartheta \cos f$, $\gamma_2 = \operatorname{sen} \vartheta \operatorname{sen} f$, $\gamma_3 = \operatorname{cos} \vartheta$ dell'asse fisso delle z, le (7) divengono:

(7')
$$\begin{cases} A \frac{dp}{dt} = (B - C) qr + i F \left(\frac{\gamma_1 + i \gamma_2}{1 + \gamma_3}\right) \frac{\gamma_1 \gamma_3 - i \gamma_1}{1 - \gamma_3^2} \\ B \frac{dq}{dt} = (C - A) rp - F \left(\frac{\gamma_1 + i \gamma_2}{1 + \gamma_3}\right) \frac{\gamma_1 - i \gamma_2 \gamma_3}{1 - \gamma_3^2} \\ C \frac{dr}{dt} = (A - B) pq - i F \left(\frac{\gamma_1 + i \gamma_2}{1 + \gamma_3}\right) \end{cases} ,$$

talchè, per l'integrazione, basta associare a quest'ultimo sistema le formule di Poisson, relative ai tre coseni γ_1 , γ_2 , γ_3 . La medesima circostanza si presenta appunto nel caso della gravità, ma le (7') sono di più, qualunque sia la forma della funzione F, integrabili per quadrature, mentre, pel corpo pe-

sante, quando, come ora si suppone, $A \gtrsim B \gtrsim C$, il problema del moto è riducibile alle quadrature solo allora che il centro di gravità cade nel punto fisso.

Si ha una riprova della esistenza di due integrali lineari per le equazioni (7'), moltiplicandole ordinatamente per $\alpha_1 + i\beta_1$, $\alpha_2 + i\beta_2$, $\alpha_3 + i\beta_3$, ovvero per γ_1 , γ_2 , γ_3 e sommando: In entrambi i casi il coefficiente di F è identicamente nullo.

5. Caso b). Suppongasi ora A = B. La espressione (2) della forza viva T non muta, cangiando x_1 in x_2 (e quindi x'_1 in x'_2); essa ammette per conseguenza, oltre alle trasformazioni infinitesime Z₁f, Z₂f, Z₃f anche quelle, che da esse si ottengono collo scambio di x_1 , p_1 in x_2 , p_2 . Così operando, $Z_1 f$ e $Z_2 f$ si permutano tra loro, ma $Z_3 f$ diviene $Z_3 f$; abbiamo dunque in questo caso, oltre agli integrali (4), anche $Z_3f = \cos t$, che, in virtù delle (3), assume il solito aspetto $r = \cos t$. Siccome poi (Tedone, loc. cit.) non vi è alcun altro integrale lineare indipendente dai quattro accennati, così T amammette le sole trasformazioni infinitesime Z₁f, Z₂f, Z₃f, Z'₃f, che debbono perciò costituire un gruppo G₄ a quattro parametri: Le (5) e (6) ce ne danno conferma. Rispetto alla struttura di questo gruppo, si vede subito, confrontando col gruppo proiettivo $G_6(Z_1f, Z_2f, Z_3f; Z'_1f, Z'_2f, Z'_3f)$ della sfera immaginaria: $x_1^2 + x_2^2 + x_3^2 + 1 = 0$, che G_4 vi è contenuto, mentre contiene come sottogruppo invariante (in causa delle (6)) il G₃ (Z₁f, Z₂f, Z₃f) corrispondente all'ipotesi generale $A \ge B \ge C$. Sotto l'aspetto geometrico il G4 può ritenersi individuato dalla condizione di trasformare in sè la quadrica $x_1^2 + x_2^2 + x_3^2 + 1 = 0$, lasciando ferme due generatrici della serie Γ (a differenza del G3, che ne lascia ferme tre e quindi tutte).

Ogni sottogruppo ∞^2 di G_4 , come si desume dalle considerazioni della Nota precedente, determina un caso di integrabilità delle equazioni differenziali del movimento; per G_3 si avevano soltanto dei sottogruppi e quindi dei potenziali immaginarî, qui ne troviamo anche di reali, tutti però, come ora verificheremo, sostanzialmente conosciuti.

È manifesto dapprima, in virtù delle (6), che le due trasformazioni infinitesime:

$$c_1 Z_1 f + c_2 Z_2 f + c_3 Z_3 f$$
, $Z'_3 f$

costituiscono, per qualunque valore delle costanti c_1 , c_2 , c_3 , un sottogruppo di G_4 , talchè ogni integrale V del sistema completo:

(8)
$$\begin{cases} c_1 Z_1 V + c_2 Z_2 V + c_3 Z_3 V = 0 \\ Z'_3 V = 0 \end{cases},$$

assunto a funzione delle forze, conduce per un corpo di rivoluzione (o più generalmente di cui l'ellissoide di inerzia relativo al punto fisso sia di rivoluzione) a equazioni del moto integrabili per quadrature. Sarebbe poi facile riconoscere che i potenziali reali ∇ , corrispondenti a sottogruppi ∞^2 di G_4 , sono tutti contenuti nella formula (8).

Quanto alla forma di essi, avremo in coordinate euleriane, a tenore delle (3'):

 $Z'_3V = -\frac{\partial V}{\partial f} = 0$,

dopo di che la prima equazione (8) ci dà:

$$(-c_1 \sin \varphi + c_2 \cos \varphi) \frac{\partial V}{\partial \vartheta} + \left(-c_1 \cos \varphi \frac{\cos \vartheta}{\sin \vartheta} - c_2 \sin \varphi \frac{\cos \vartheta}{\sin \vartheta} + c_3\right) \frac{\partial V}{\partial \varphi} = 0,$$

il cui integrale generale è:

$$V = F_1 (c_1 \operatorname{sen} \vartheta \cos \varphi + c_2 \operatorname{sen} \vartheta \operatorname{sen} \varphi + c_3 \cos \vartheta)$$
,

con F. funzione arbitraria.

Se si osserva che l'argomento c_1 sen $\mathcal{G}\cos\varphi+c_2$ sen $\mathcal{G}\sin\varphi+c_3\cos\vartheta$ può interpretarsi come la componente, secondo l'asse mobile delle z di un vettore costante in grandezza e direzione, si è indotti a immaginare l'asse fisso delle ζ parallelo a quel vettore, ciò che riduce l'espressione di V a $F_1(c_3\cos\vartheta)=F(\cos\vartheta)$, forma di potenziale ben nota, che conviene in particolare al caso di un corpo pesante, il cui centro di gravità sia situato sull'asse di rotazione dell'ellissoide di inerzia, relativo al punto fisso.

6. Caso c). Quando i tre momenti di inerzia sono tutti eguali, si possono scambiare le coordinate x_1 , x_2 , x_3 senza che il valore (2) di T rimanga alterato; ne deduciamo che, insieme a Z_1f , Z_2f , Z_3f , T ammette le trasformazioni infinitesime Z'_1f , Z'_2f , Z'_3f e per conseguenza il gruppo G_6 da esse complessivamente costituito; ma un gruppo siffatto è (anche nel campo reale) simile a quello dei movimenti in geometria ellittica (1), si può dunque a priori asserire che la varietà $\boldsymbol{\Phi}$ di elemento lineare $ds = \sqrt{2} \operatorname{T} dt^2$ è a curvatura costante positiva. Del resto, a conferma di ciò, è facile attribuire al ds di $\boldsymbol{\Phi}$ la forma canonica (2) degli spazi a curvatura costante positiva.

Si ha infatti dalla (2) per A = B = C:

$$2T = \frac{4A}{\sigma^4} \{ (x'_1 + x_3 x'_2 - x_2 x'_3)^2 + (x'_2 + x_1 x'_3 - x_3 x'_1)^2 + (x'_3 + x_2 x'_1 - x_1 x'_2)^2 \} =$$

$$\frac{4A}{\sigma^4} \{ (1 + x_2^2 + x_3^2) x'_1^2 + (1 + x_3^2 + x_1^2) x'_2^2 + (1 + x_1^2 + x_2^2) x'_3^2 - 2x_2 x_3 x'_2 x'_3 - 2x_3 x_1 x'_3 x'_1 - 2x_1 x_2 x'_1 x'_2 \} =$$

$$\frac{4A}{\sigma^4} \{ (\sigma^2 - x_1^2) x'_1^2 + (\sigma^2 - x_2^2) x'_2^2 + (\sigma^2 - x_3^2) x'_3^2 - 2x_2 x_3 x'_2 x'_3 - 2x_3 x_1 x'_3 x'_1 - 2x_1 x_2 x'_1 x'_2 \} =$$

$$\frac{4A}{\sigma^2} \{ x'_1^2 + x'_2^2 + x'_3^2 - \sigma'^2 \} ,$$

come volevasi dimostrare

 ⁽¹⁾ Lie, ibidem, B. III, pag. 479, si cfr. anche la recente Memoria del prof. Bianchi Sulle superficie a curvatura nulla in geometria ellittica, Ann. di Mat., anno presente.
 (2) Beltrami, Teoria fondamentale degli spazi di curvatura costante, Ann. di Mat., T. 2, 1869, pag. 253.

Le conseguenze dinamiche di questa osservazione sono immediate. È noto infatti che le equazioni del moto:

(9)
$$\frac{d\frac{\partial \mathbf{T}}{\partial x_i'}}{dt} = \frac{\partial \mathbf{T}}{\partial x_i} + \mathbf{X}_i \qquad (i = 1, 2, 3)$$

(dove X_i rappresenta la componente della forza secondo la coordinata lagrangiana x_i) di un sistema, alla cui forza viva T corrisponda una varietà di curvatura costante, ammettono le stesse traiettorie del sistema:

(10)
$$x_i'' = \frac{X_i}{\sigma^4}$$
, $(i = 1, 2, 3)$

il quale determina nello spazio ordinario il moto di un punto materiale, sollecitato da forze, che hanno secondo gli assi x_1 , x_2 , x_3 le componenti: $\frac{X_1}{\sigma^4}$, $\frac{X_2}{\sigma^4}$, $\frac{X_3}{\sigma^4}$ (1). Di più i due sistemi (9) e (10) sono tra loro equivalenti a meno di quadrature (2). Ne viene che ad ogni caso di integrabilità delle equazioni del moto di un punto materiale nello spazio ordinario, corrisponde un caso di integrabilità per quadrature delle equazioni del moto di un corpo rigido intorno ad un punto fisso, per cui siano eguali i tre momenti di inerzia.

In particolare ai casi integrabili del moto di un punto materiale sopra una superficie, corrispondono esempî pure integrabili di moti di un corpo rigido con due gradi di libertà, i quali si possono sempre supporre determinati, imponendo ad un punto del corpo la condizione di strisciare senza attrito sopra una superficie e quindi sopra una curva sferica di essa.

Fisica. — Determinazione sperimentale della direzione di un campo magnetico uniforme dall'orientazione del magnetismo da esso indotto. Nota del dott. G. Folgheraiter, presentata dal Socio Blaserna.

Dopo di essermi accertato che l'orientazione del magnetismo nei vasi antichi di argilla cotta (3) non ha variato dall'epoca della loro fabbricazione fino al presente, devo esaminare il 2º problema, con quale esattezza cioè si arriva a stabilire, qual'era l'inclinazione magnetica in quell'epoca basandosi sull'orientazione del magnetismo indotto, che noi riscontriamo in essi (ammessa naturalmente conosciuta la loro posizione durante la cottura).

⁽¹⁾ Veggasi per esempio la Nota del sig. G. Picciati: Sulla trasformazione delle equazioni della dinamica in alcuni casi particolari, Atti dell'Ist. Veneto, 1896.

⁽²⁾ Cfr. la mia Memoria Sulle trasformazioni delle equazioni dinamiche, Annali di Matematica, 1896.

⁽³⁾ Vedi questi Rendiconti, vol. V, 2º sem., 1896, pag. 66.